The Dirac Video Codec: A Programmer’s Guide

Scott R Ladd
August 13, 2005

In March 2004, BBC R&D released a prototype Open Source video coding
algorithm named Dirac. This codec (coder/decoder) takes a novel approach;
while it has many similarities to existing algorithms such and MPEG-2 and
H.264/AVC, Dirac is an original invention that uses wavelet transforms, arith-
metic encoding, variable-block-size motion compensation, and hierarchical mo-
tion estimation.

The design of Dirac is modular, and thus well-suited to implementation with
an object-oriented programming language. The reference engine is written in
ISO Standard C++, with an eye toward portability and a correspondence be-
tween class structures and algorithm concepts. Since Dirac began as a research
project, it has not yet been fully optimized for performance—however, its mod-
ular design provides many opportunities for improving both compression and
algorithm speed.

This document is an overview of the Dirac algorithm, providing develop-
ers with the basic information required to understanding how the compression
and decompression process works. As such, there is less reliance on mathe-
matical theory and more focus on the conceptual basis of the codec. Prereq-
uisites for understanding this material include practical knowledge of digital
signal processing and data compression. A companion document describing
the algorithm from a more mathematical perspective is available from http:
//www.bbc.co.uk/rd/projects/dirac/documentation. shtml.

The following web addresses also provide tutorial and educational material
that lies outside the scope of this document:

e Digital Signal Processing Guru
http://www.dspguru.com/

e The Scientist and Engineer’s Guide to Digital Signal Processing
http://www.dspguide.com/

e Interactive Data Compression Tutor
http://www.eee.bham.ac.uk/WoolleySI/A117/main.htm

e ACM SIGGRAPH Education
http://www.siggraph.org/education



The bibliography lists more resources that delve into the theoretical under-
pinnings of the algorithm.



1 Software Environment

The core Dirac codec is implemented in platform-neutral ISO Standard C++.
The current encoder and decoder run from the command prompt and do not
require specific operating system elements. *

The Dirac source code is distributed a compressed UNIX tarball, which
can be downloaded from the Dirac web site at http://sourceforge.net/
projects/dirac/. This tarball can be extracted with utilities such as the Unix
tar command or the Windows WinZip utility.

1.1 GNU/Linux and Unix

Under GNU/Linux, Dirac has been successfully compiled and tested with the
GNU g++ compiler (versions 3.3 and 3.4) and Intel’s C++ compiler (versions
7.x and 8.0). Dirac has no dependencies on any libraries beyond the standard
C and C++ function and class libraries included with your compiler.

For GNU/Linux systems, the Dirac distribution provides a GNU Autotools
configure script. To build the codec and command-line utilities, follow the
traditional sequence of commands:

./configure
make
make install

The last command must be executed with root privileges so that Dirac’s li-
braries and programs will be installed to the appropriate directories. By de-
fault, the dirac_encoder and dirac_decoder programs will be installed to
/usr/local /bin, while the shared and static libraries (described below) will be
copied to /usr/local/lib. These default directories can be changed by pro-
viding options when invoking the configure script; the command ./configure
—help will list and explain these options.

1.2 Microsoft Windows

Under Microsoft Windows 2000 and XP Professional, Dirac has been successfully
compiled and tested using Visual C++ (versions 12.1 and 13.0) and Intel C++
(versions 7.x and 8.0). You can build the Dirac command-line programs and
static libraries using Microsoft nmake and the Makefile in the codec/win.

1 Future enhancements to Dirac will included graphical user interfaces and other platform-
specific features.



2 Source Code Organisation

Dirac is comprised of four libraries, each maintained in a separate subdirectory
of the codec base directory. These libraries are:

e libdirac_encoder
Compression classes for sequences, frames, and components.

e libdirac_decoder
Decompression classes for sequences, frames, and components.

e libdirac_motionest
Motion estimation classes used in the encoder.

e libdirac_common
General-purpose classes used by both the encoder and decoder, including
wavelet transforms, arithmetic encoding and decoding, and file 1/0.

The command-line encoder and decoder also each reside in individual direc-
tories, and serve as drivers for the underlying library code.

The source code files contain one or more related classes. For example, lib-
dirac_common/wavelet_transform.h and .cpp define classes related to the
wavelet transform, including WaveletTransform, WaveletTransformParameters,
Subband, and SubbandList.



3 Codec Concepts

The term codec derives from the phrase coder/decoder; in essence, a codec
translates information to and from an intermediate form. A video codec—such
as Dirac—employs a intermediate form that compresses a stream of images for
storage or rapid transmission.

Key issues related to video codecs include:

e amount of compression
e image quality
e computational complexity

An effective compression algorithm reflects the nature of the data being
encoded. In the case of a text document, ”image quality” is vitally important,
requiring a lossless algorithm—a document wouldn;’t make much sense if letters
or words went missing in the process of compression and decompression. For
such lossless encoding, a codec uses a compression algorithm (e.g., Huffman
encoding, arithmetic coding) that removes statistical redundancy from data,
representing common values with short bit codes and uncommon values with
longer codes. This style of algorithm works well when the decoded data must
be identical to the source data.

A video stream contains considerable subjective redundancy—large areas
often contain little or no visible detail, and changes between frames are often
imperceptible. A video codec can afford to lose some video information in
the compression process, so long as the data being ”lost” is not noticed by a
human viewer. The goal of a video codec (like Dirac) is to produce the smallest
compressed form that can be decompressed into a stream that appears for a
given loss when compared to the original images.

Video compression algorithms are based on two key techniques: spatial com-
pression and temporal compression. Spatial compression relies upon removing
redundancies within one frame of video or removing redundancies within small
areas of a single frame. Temporal compression, on the other hand, relies upon
similarity between successive pictures and performs compression utilizing pre-
diction and motion compensation.

Many images or single video frames often contain sizable areas with the same
single pixel value. This results in low spatial frequencies. And while high spatial
frequency content exists in small detailed areas of the picture, there is typically
only a small amount of energy at those frequencies. By transforming the image
into the frequency domain, or something similar (such as the wavelet domain)
these typical image characteristics can then be taken advantage of to achieve a
compression gain. More specifically, in the frequency domain the high-frequency
bands can be described with fewer bits because the amplitudes are smaller and
because the human eye is less sensitive to noise in high frequencies.

Inter-frame compression takes advantage of the similarities between succes-
sive frames in a video stream. Instead of sending complete frames, the inter-



frame coders may only send the difference between the current frame and the
previous frame in the form of differential coding.

One way Dirac differs from typical coding algorithms is in how it handles
Inter-frame compression and the differences between frames.

A typical Inter-frame coding standard (such as MPEG-2) utilizes three types
of frames:

e I (Intra) frames
which are coded without reference to any other pictures

e P (Predicted) frames
which are coded using motion compensation from a previous picture (I or
P)

e B (Bidirectionally predicted) frames
which are coded using interpolation from a previous and subsequent I or
P picture

Instead of adopting this classification, Dirac has I, Layer 1 (L1) and Layer 2
(L2) frames. Inter frames can be L1 frames, which means that they can be used
as a reference for other frames, or L2 frames, which can’t. There is no assump-
tion that L1 frames are forward predicted and L2 frames are bidirectionally
predicted. Having said that, the current version of the code (0.1.0) implements
a traditional GOP structure in which L1 frames are in fact P frames and L2
frames are B frames. However, in future these concepts will diverge.

In an Inter-frame coded video stream, the absolute image data (I-frames)
are interleaved with frames containing difference data (inter frames). The I-
frame and all the inter frames prior to the next I frame are called a Group Of
Pictures (GOP). The larger the number of inter frames in a GOP, the higher
is the achieved compression rate. However, a long GOP can cause a long delay
before the picture can recover from a transmission error. Also, a long GOP
makes video authoring and editing problematic, as the video stream can only
be manipulated at I-frames.

In a case of a moving objects, the appearance of two successive frames can be
similar, but the fixed sampling grid can cause large differences to be generated
between two successive frames. Motion compensation techniques are used to
remove this effect of the motion, so that the difference data will only reflect the
changes in appearance of the moving object, not the change in location. The
change is location is coded as a motion vector. The use of motion vectors can
provide a significant additional compression gain.

In essence, encoding reads a byte stream and produces a coded bit-stream;
during decoding, the process is reversed, and a coded bit stream is expanded into
an output byte stream. This process is lossy, in that compression involves the
loss of some information that can not be restored during decompression. The
greater the level of compression, the more data that is lost in the coding process;
a balance must therefore be struck between image quality and compression
levels.



A figure goes here

Figure 1: Video encoding and decoding with Dirac

Dirac differs from mainstream codecs that used in the main proprietary or
standard video compression systems. Dirac seems to give a two-fold reduction
in bit rate over MPEG-2 for high definition video (e.g. 1920x1080 pixels), its
original target application. We have begun the process of optimising for Internet
streaming resolutions and we aim to be at least broadly competitive with state
of the art video codecs.

Figure 1 provides a simplified description of the steps involved in encoding
and decoding data, as implemented by Dirac.



4 File Formats

At this time, Dirac supports YUV format streams. YUV is the format native to
TV broadcast and composite video signals. It separates the brightness informa-
tion (Y) from the colour information (U and V). The colour information consists
essentially of red and blue colour difference signals; the green component can
be reconstructed by subtracting the U and V components from the brightness
component. Because the human eye is more sensitive to brightness than it is to
colour, the chroma components generally are recorded with fewer samples than
is the brightness data.
The supported YUV formats are:

ChromaFormat | YUV format description

Yonly Gray-scale image, Y component only

format422 4:2:2, packed format, % horizontal chroma resolution
format444 4:4:4, unpacked format, full chroma resolution
format420 4:2:0, packed format, 1 horizontal/vertical resolution
format411 4:1:1, packed format, 3 horizontal resolution
formatNK unknown format

At this time, Dirac compresses and decompresses a proprietary BBC video
format that is split into two files: a .hdr file containing header information, and
a .yuv file with brightness and chroma data; it reads and writes encoded data
as a bit stream file with the .drc extension.

Dirac does not support RGB format at this time.



A figure goes here

Figure 2: Encoder initialisation

5 Encoding Process

From a given base file name, the encoder creates a PicInput object that opens
the .hdr and .yuv files. Based on command-line arguments, the encoder then
encapsulates a set of encoding parameters in an EncoderParams object. If
the encoder creates these objects successfully, it uses them in constructing a
SequenceCompressor for managing the actual compression process.

5.1 SequenceCompressor

SequenceCompressor operates on “Groups of Pictures”, or gops. Each gop is
a sequence of frames, each of which has Y, U, and V components. When con-
structed, a gop creates internal buffers and maps the positions of frames in coded
order to their positions in display order. In practice, a SequenceCompressor acts
very much like an iterator.

It’s important to realize that the order of frames as they are encoded may
not be the same order in which they should be displayed. Thus Sequence-
Compressor::CompressNextFrame compresses the next frame in coding order
and it returns the next frame in display order. It is the responsibility of the
calling function to do ‘something’ with the coded frames after each call to
CompressNextFrame—in most cases, this will be to call an output function
to write the compressed frames to a file or a network stream. These are pro-
vided, for file IO purposes, by the PicInput and PicOutput classes, which should
be subclassed for other types of 10.

5.2 Frames and Frame Compression

For each call to CompressNextFrame, a SequenceCompressor creates a Frame-
Compressor to code the next frame in sequence. The FrameCompressor is pro-
vided a reference to a gop and the index of a frame to code; it reads the requested
frame from the gop, and applies the following process to it:

1. Motion estimation and motion vector voding



A figure goes here

Figure 3: Motion estimation

2. Motion compensation

3. Compression of Y,U and V components, via a CompCompressor object,
involving:

(a) Wavelet transform

(b) Entropy encoding via arithmetic coding

4. A second reverse motion compensation pass based on compressed compo-
nents to reconstruct the compressed frame

The Frame object contains Y, U, and V components (unless it is a gray-scale
image, in which case it has only the Y component) as separate arrays. When
the frame is compressed, these arrays are replaced with compressed versions. It
also contains 'upconverted’ versions of these components - that is, arrays that
are much larger versions of the original arrays, with values interpolated between
the original values. These upconverted components are used for doing motion
estimation and compensation to an accuracy finer than 1 pixel.

5.2.1 Motion Estimation and Compensation

Successive frames in a video sequence tend to be highly correlated—in other
words, adjacent frames are very similar. Thus the difference between successive
images is often very small, and a compression algorithm can take advantage
of this by encoding differences between successive frames. Objects in motion
increase the difference between frames, and decrease an algorithm’s ability to
compress successive images.

Motion estimation and compensation is the process whereby elements in a
frame are correlated to elements in other frames by the estimated amount of
change. Or, in simpler terms, motion estimation computes the difference be-
tween blocks of successive frames, creating values that describe the amount of
change that occurs. The motion vector can then be compressed using the same
arithmetic coding technique used for encoding wavelet transformation coeffi-
cients.

10



A figure goes here

Figure 4: Wavelet transform coeflicient packing

Dirac performs motion estimation using a set of Lagrangian parameters de-
fined by the type of video being compressed (e.g., high-definition, standard
definition, etc.) A MotionEstimator object computes the motion vectors, which
are then compressed using arithmetic coding via an MvDataCodec object. For
L1- and L2-frames, motion estimation and compensation occurs before compo-
nent compression, and another motion compensation pass is performed after
component compression to add back in the reference data that was subtracted
to produce the motion-compensated difference.

5.2.2 Wavelet Transform

The CompCompressor class uses a wavelet transform (defined by a Wavelet-
Transform object) to map component data from the sample domain into the
frequency domain. Component data is stored by a frame in a 2D array; the
wavelet transform is an iterated, reversible series of low- and high-pass filters
that pack data into the source array, as shown in Figure 3. Each rectangular
region represents a set of 2D wavelet coefficients in the same sub-band, and each
is encoded separately by the encoder. Metadata for each sub-band, including
its coordinates in within the 2D array, is stored in the Subband class structure.
The wavelet transform produces a sub-band list containing all sub-bands.

The purpose of the wavelet transform is to ’decorrelate’ the input data, re-
ducing the number of coefficients required to describe the image: it provides
a more compact representation. This is one way in which Dirac differs from
standards such as JPEG and MPEG-2, which use a Discrete Cosine Transform,
although JPEG2000 uses wavelet technology. Dirac’s wavelet transform is im-
plemented using a ‘lifting scheme’, which factors the filters into a number of
short filters; this technique is faster than filtering in a straight-forward fashion.

5.2.3 Arithmetic Encoding

After application of the wavelet transform, the CompCompressor::Compress
function loops through all sub-bands in reverse order, from top-left to bottom

11



right, compressing each one via arithmetic encoding through a BandCodec ob-
ject. BandCodec and MvDataCodec derive from ArithCodec, which provides
the core arithmetic coding routines.

Before each symbol is fed into the arithmetic coding process, it is approx-
imated, effectively by dividing by some number (a quantisation factor) and
throwing away the remainder; this process is called quantisation. This makes
the wavelet representation even more compact at the expense of some loss in
quality: with luck this loss is imperceptible.

Arithmetic encoding (like the more commonly-known Huffman encoding) is
an example of entropy encoding: an algorithm that assigns codes to symbols
in such a fashion as to represent the most common symbols with the shortest
codes. Motion compensation and wavelet transformation reduce the amount
of information in a frame; quantisation reduces it still further, and arithmetic
coding then encodes that data in a reversible way.

12



6 Conclusions

The Dirac codec is a novel approach to high-quality video compression, combin-
ing several well-known techniques into a flexible and effective algorithm. The
use of C++ provides an object-oriented framework that can be extended with
additional features. Future directions include optimisation of the code base, the
use of fixed-point math in the wavelet transform, and parallelisation to take
advantage of multiprocessor systems for encoding.

13



