

C++ Developers Guide

rasdaman version 8.4

 raster data manager

rasdaman C++ Developers Guide

Copyright 2003-2009 Peter Baumann / rasdaman GmbH p.2

rasdaman Version 8.4 C++ Developers Guide

Rasdaman Community is free software: you can redistribute it and/or modify it under the terms of the

GNU General Public License as published by the Free Software Foundation, either version 3 of the

License, or (at your option) any later version.

Rasdaman Community is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;

without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR

PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with rasdaman Community.

If not, see www.gnu.org/licenses. For more information please see www.rasdaman.org or contact Peter

Baumann via baumann@rasdaman.com.

Copyright 2003-2011 Peter Baumann.

All trade names referenced are service mark, trademark, or registered trademark of the respective

manufacturer.

http://www.gnu.org/licenses
http://www.rasdaman.org/
mailto:baumann@rasdaman.com

rasdaman C++ Developers Guide

Copyright 2003-2009 Peter Baumann / rasdaman GmbH p.3

Preface

Overview

This guide provides information about how to use the rasdaman database

system (in short: rasdaman). The booklet explains usage of raslib, the

rasdaman API, through its C++ binding.

Follow the instructions in this guide as you develop your application which

makes use of rasdaman services. Explanations detail how, from within a

C++ program, to create databases, collections, and instances; how to

retrieve from databases; how to manipulate and delete instances within

databases; how to influence physical storage parameters; how to do

transaction handling and other administrative tasks.

The rasdaman interfaces are available on different operating system

platforms. Although there are some differences in the way rasdaman

appears in these different versions, the functionality is the same.

rasdaman C++ Developers Guide

Copyright 2003-2009 Peter Baumann / rasdaman GmbH p.4

Audience

The information in this manual is intended primarily for application

developers and for database administrators.

Rasdaman Documentation Set

This manual should be read in conjunction with the complete rasdaman

documentation set which this guide is part of. The documentation set in its

completeness covers all important information needed to work with the

rasdaman system, such as programming and query access to databases,

guidance to utilities such as the graphical-interactive query tool rView, and

release notes.

In particular, current restrictions, known bugs, and workarounds are listed

in the Release Notes. All documents, therefore, always have to be

considered in conjunction with the Release Notes.

The rasdaman Documentation Set consists of the following documents:

 C++ Developer's Guide

 Java Developer's Guide

 Query Language Guide

 Web Client Toolkit Guide

 Installation and Administration Guide

 Error Messages

 rView Guide

 Release Notes

rasdaman C++ Developers Guide

Copyright 2003-2009 Peter Baumann / rasdaman GmbH p.5

Table of Contents

1 Introduction .. 7

1.1 Multidimensional Data... 7

1.2 rasdaman Overall Architecture ... 8

1.3 Further Reading .. 9

2 Terminology ... 10

2.1 An Intuitive Definition .. 10

2.2 A Technical Definition ... 11

3 Application Examples ... 13

3.1 Basic Application Program Structure ... 14

3.2 Insertion of MDD ... 15

3.3 Lookup of an MDD set by its name .. 17

rasdaman C++ Developers Guide

Copyright 2003-2009 Peter Baumann / rasdaman GmbH p.6

3.4 Invocation of RasML statements .. 18

4 Raslib Classes .. 20

4.1 Overview .. 20

4.2 Type Classes ... 21

4.3 Object Classes .. 22

4.4 System Classes... 25

4.5 Schema Access Classes .. 28

4.6 Storage Layout Classes .. 31

4.7 Error Classes ... 39

5 Linking MDD with Other Data ... 42

5.1 Sessions .. 42

5.2 Collection Names .. 43

5.3 Object Identifiers ... 43

6 Compilation and Linkage of Client Programs .. 45

6.1 Compilation .. 45

6.2 Linkage .. 46

6.3 Client Environment Parameters ... 47

6.4 The Example Programs .. 47

6.5 Copyright Note .. 48

6.6 Legal Note ... 48

7 HTML Documentation ... 49

rasdaman C++ Developers Guide

Copyright 2003-2009 Peter Baumann / rasdaman GmbH p.7

1 Introduction

1.1 Multidimensional Data

In principle, any natural phenomenon becomes spatio-temporal array data

of some specific dimensionality once it is sampled and quantised for

storage and manipulation in a computer system; additionally, a variety of

artificial sources such as simulators, image renderers, and data

warehouse population tools generate array data. The common charac-

teristic they all share is that a large set of large multidimensional arrays

has to be maintained. We call such arrays multidimensional discrete data

(or short: MDD), expressing the variety of dimensions and separating

them from the conceptually different multidimensional vectorial data

appearing in geo databases.

rasdaman is a domain-independent database management system

(DBMS) which supports multidimensional arrays of any size and di-

mension and over freely definable cell types. Versatile interfaces allow

rapid application deployment while a set of cutting-edge intelligent op-

rasdaman C++ Developers Guide

Copyright 2003-2009 Peter Baumann / rasdaman GmbH p.8

timization techniques in the rasdaman server ensures fast, efficient

access to large data sets, particularly in networked environments.

1.2 rasdaman Overall Architecture

The rasdaman client/server DBMS has been designed using interna-

tionally approved standards wherever possible. The system follows a two-

tier client/server architecture with query processing completely done in the

server. Internally and invisible to the application, arrays are decomposed

into smaller units which are maintained in a conventional DBMS, for our

purposes called the base DBMS.

On the other hand, the base DBMS usually will hold alphanumeric data

(such as metadata) besides the array data. rasdaman offers means to

establish references between arrays and alphanumeric data in both di-

rections.

Hence, all multidimensional data go into the same physical database as

the alphanumeric data, thereby considerably easing database main-

tenance (consistency, backup, etc.).

Figure 1 Embedding of rasdaman in IT infrastructure

Further information on this topic is available in the other components of

the rasdaman documentation set.

rasdaman C++ Developers Guide

Copyright 2003-2009 Peter Baumann / rasdaman GmbH p.9

1.3 Further Reading

n.n.: rasdaman Query Language Guide, rasdaman GmbH.

S.J. Cannan: SQL The Standard Handbook, McGraw-Hill Book Company,

London, 1993.

R.G.G. Cattell: The Object Database Standard: ODMG 2.0, Morgan

Kaufmann Publishers, California, 1997.

B. Stroustrup: C++ Programming Language, Addison-Wesley, 1997.

rasdaman C++ Developers Guide

Copyright 2003-2009 Peter Baumann / rasdaman GmbH p.10

2 Terminology

This section gives an overview of the concepts underlying rasdaman and

raster databases. For details on the operational semantics of the model

the reader is strongly encouraged to study the rasdaman Query Language

Guide.

2.1 An Intuitive Definition

An array is a set of elements which are ordered in space. The space

considered here is discretized, i.e., only integer coordinates are admitted.

The number of integers needed to identify a particular position in this

space is called the dimension (sometimes also referred to as di-

mensionality). Each array element, which is referred to as cell, is posi-

tioned in space through its coordinates.

A cell can contain a single value (such as an intensity value in case of

grayscale images) or a composite value (such as integer triples for the

red, green, and blue component of a color image). All cells share the

rasdaman C++ Developers Guide

Copyright 2003-2009 Peter Baumann / rasdaman GmbH p.11

same structure which is referred to as the array cell type or array base

type.

Implicitly a neighbourhood is defined among cells through their coordi-

nates: incrementing or decrementing any component of a coordinate will

lead to another point in space. However, not all points of this (infinite)

space will actually house a cell. For each dimension, there is a lower and

upper bound, and only within these limits array cells are allowed; we call

this area the spatial domain of an array. In the end, arrays look like

multidimensional rectangles with limits parallel to the coordinate axes. The

database developer defines both spatial domain and cell type in the array

type definition. Not all bounds have to be fixed during type definition time,

though: It is possible to leave bounds open so that the array can

dynamically grow and shrink over its lifetime.

F

i

g

u

r

e

2

C

o

n

s

tituents of an array

Synonyms for the term array are multidimensional arrays, multidimen-

sional data, MDD. They are used interchangeably in the rasdaman

documentation.

In rasdaman databases, arrays are grouped into collections. All elements

of a collection share the same array type definition Collections form the

basis for array handling, just as tables do in relational database

technology.

2.2 A Technical Definition

Programmers who are familiar with the concept of arrays in programming

languages maybe prefer this more technical definition:

An array is a mapping from integer coordinates, the spatial domain, to

some data type, the cell type. An array's spatial domain, which is always

finite, is described by a pair of lower bounds and upper bounds for each

7 8 5 6 4

23

22

spatial domain dimension

24

21
lower bound

upper

bound
42

cell value

cell

rasdaman C++ Developers Guide

Copyright 2003-2009 Peter Baumann / rasdaman GmbH p.12

dimension, resp. Arrays, therefore, always cover a finite, axis-parallel

subset of Euclidean space.

Cell types can be any of the base types and composite types defined in

the ODMG standard and known, for example from C/C++. In fact, every

admissible C/C++ type is admissible in the rasdaman type system, too.

In rasdaman, arrays are strictly typed wrt. spatial domain and cell type.

Type checking is done at query evaluation time; it can be disabled

selectively for any lower and upper bound of an array, thereby allowing for

arrays whose spatial domain varies over the array lifetime.

rasdaman C++ Developers Guide

Copyright 2003-2009 Peter Baumann / rasdaman GmbH p.13

3 Application Examples

The following sections contain three examples of using the rasdaman API.

Every example contains a code fragment including variable declarations

and definitions, database open/close and transaction begin/commit

statements. The numbers at the beginning of the code lines are used as

references in the explaining text. Code segments which are in more than

one example are explained where they occur first. For more clarity, error

handling was omitted.

As raslib heavily makes use of templates, some platform specifics have to

be considered when compiling and linking application programs. These

are collected in Section 6.

For details on the operational semantics of the rasdaman data model the

reader is strongly encouraged to study the rasdaman Query Language

Guide.

rasdaman C++ Developers Guide

Copyright 2003-2009 Peter Baumann / rasdaman GmbH p.14

3.1 Basic Application Program Structure

 Operation sequence

In order to access data in a database, variables have to be first defined

and initialized, the database has to be opened and a transaction started.

In the end, the transaction has to be committed and the database closed.

Hence, an application basically consists of the following components

(sample C++ code interspersed as far as rasdaman access is concerned):

 Declaration and definition of database and transaction variables and

other data like images or image sets

r_Database database;

r_Transaction transaction;

 Set the server name using the default port 7001.

 database.set_servername("ServerName");

 Set user identification.

 database.set_useridentification("me", "myPassword");

 Open the database.

 database.open("DatabaseName");

 Begin the transaction.

 transaction.begin();

 Work with the database.

 Commit the transaction.

 transaction.commit();

 Close the database.

 database.close();

Synchronous query execution

When a query is sent to the rasdaman server it will be executed in

completeness – a running query cannot be aborted1. Care should be

taken therefore not to start queries requiring resources beyond the

capability of the server hardware and software environment, as the

rasdaman service may be blocked for an indefinite time period.

1 This has nothing to do with transactions – after each completion of a

query, the embracing transaction can be aborted indeed.

rasdaman C++ Developers Guide

Copyright 2003-2009 Peter Baumann / rasdaman GmbH p.15

3.2 Insertion of MDD

The following example creates a new MDD set with the name ULongSet

and inserts two images into this set. The first image is initialized with zero,

and the second one by way of some assumed initialization function.

(1) r_Database database;

r_Transaction transaction;

r_Minterval domain;

r_Ref< r_Marray<r_ULong> > image;

r_Ref< r_Set< r_Ref< r_Marray<r_ULong> > > > image_set;

(2) database.set_servername("MyServer");

database.set_useridentification("me", "myPassword");

(3) database.open("MyDatabase");

(4) transaction.begin();

(5) image_set = new(&database, “ULongSet”)

 r_Set< r_Ref< r_Marray<r_ULong> > >;

(6) database.set_object_name(*image_set, "MyCollection");

(7) domain = r_Minterval(2) << r_Sinterval(l, 9l)

 << r_Sinterval(l, 9l);

(8) image = new(&database, “ULongImage”)

 r_Marray<r_ULong>(domain, 0ul);

(9) image_set->insert_element(image);

(10) image = new(&database, “ULongImage”)

 r_Marray<r_ULong>(domain, &initWithCoordinates);

(11) image_set->insert_element(image);

(12) transaction.commit();

(13) database.close();

 Explanations

(1) The variable declaration part includes one instance of type

r_Database to represent the database and one instance of type

r_Transaction to serve for the transaction handling. The domain

of type r_Minterval is used for specifying the spatial domain of the

images. In order to hold a persistent image, image has to be

declared as an r_Ref pointer on the r_Marray structure. The same

applies for image_set which is an r_Ref to the set of images.

(2) Server name and password are set (see Section 4.4.1).

(3) An open message with the database name is sent to the database

object.

(4) The transaction is opened using the transaction object.

rasdaman C++ Developers Guide

Copyright 2003-2009 Peter Baumann / rasdaman GmbH p.16

(5) Memory for the image set is allocated using the new operator of

class r_Object. As additional arguments, the new operator gets

the database object in which it is to be inserted and the type name

which was created in the database using the RasDL processor (see

Query Language Guide, Section 4).

(6) To give a name to the set for later retrieval, a set_object_name

message is sent to the database object.

(7) The spatial domain domain of the first is initialized with

[1:91,1:91]. For doing so, a temporary two-dimensional object of

type r_Minterval is filled with r_Sintervals specifying lower and

upper bounds per dimension and then gets assigned to domain.

(8) Memory for a persistent object of type r_Marray is allocated using

the new operator of r_Ref. Again, the new operator gets the current

database and the type name of the MDD object (insertion of types

is described in the Query Language Guide, Section 4). The

constructor of r_Marray gets the value zero which is used for

initializing the whole MDD.

(9) The image created in (7) is now inserted into the set. From now on,

the persistent object is accessible via the collection.

(10) The second image is created with a function pointer as second ar-

gument for the r_Marray constructor. The function must be of type

r_ULong (*initFunction)(const r_Point& pt). The function is

invoked for each cell of the MDD with the current coordinates of the

cell passed as the pt argument. The result value of type r_ULong is

taken for the initial value of the cell.

(11) The image created in (9) is inserted into the set.

(12) The transaction is committed. At this time, the image set is created

in the database and the images are inserted. The data is made

persistent and becomes visible to other transactions. The transient

memory used to store the image on client side is freed and pointers

to these objects (image_set and image) become invalid.

(13) The last statement closes and disconnects the database.

For completeness, the following code segment describes the function

used for initializing each cell of an MDD with the coordinates x+256*y:

r_ULong initWithCoordinates(const r_Point& pt)

{

 r_ULong value = pt[0] + pt[1] * 0x100;

 return value;

}

rasdaman C++ Developers Guide

Copyright 2003-2009 Peter Baumann / rasdaman GmbH p.17

3.3 Lookup of an MDD set by its name

This example demonstrates retrieval of a set containing MDD objects as

elements and iteration through the retrieved result set using raslib.

 r_Database database;

r_Transaction transaction;

r_Ref< r_Set< r_Ref< r_GMarray > > > image_set;

r_Ref< r_GMarray > image;

(1) r_Iterator< r_Ref< r_GMarray > > iter;

 database.set_servername("ServerName");

database.set_useridentification("me", "myPassword");

database.open("DatabaseName");

(2) transaction.begin(r_Transaction::read_only);

(3) image_set = database.lookup_object("CollectionName");

(4) iter = image_set->create_iterator();

(5) for(iter.reset();iter.not_done(); iter++)

{

(6) image = (*iter);

 // work with the image

 // for example print its spatial domain

(7) cout << image->spatial_domain() << endl;

}

(8) transaction.commit();

database.close();

 Explanations

(1) An iteration variable named iterator is defined. It needs the ele-

ment type of the collection being iterated as template argument.

(2) A read-only transaction is started for the retrieval query. Read-only

transactions should be used whenever possible, i.e., when no

update operations occur within this transaction, in order to have

maximal performance.

(3) The set is retrieved by sending a lookup_object message with the

set name to the database object. At this moment, just a set of object

identifiers is sent back to the client.

(4) The statement creates an iteration variable pointing to the first

element of the set.

(5) A simple for loop is used for iterating through the collection.

(6) An element of the collection, which is an r_Ref pointer to the MDD

object, can be accessed by dereferencing the iteration variable

iter.

rasdaman C++ Developers Guide

Copyright 2003-2009 Peter Baumann / rasdaman GmbH p.18

(7) The image itself is retrieved from the server when the r_Ref pointer

is dereferenced for the first time.

(8) The query result is valid only until transaction end.

3.4 Invocation of RasML statements

This example shows the creation and invocation of RasML queries using

the raslib classes:

(1) r_Minterval select_domain = r_Minterval("[0:4,0:4]");

r_Minterval where_domain = r_Minterval("[8:9,8:9]");

char collection_name[] = "CollectionName";

r_ULong threshold_value = 10;

 r_Database database;

r_Transaction transaction;

r_Set< r_Ref< r_GMarray > > image_set;

r_Ref< r_GMarray > image;

r_Iterator< r_Ref< r_GMarray > > iter;

 database.set_servername("ServerName");

database.set_useridentification("me", "myPassword");

database.open("DatabaseName");

(2) transaction.begin(r_Transaction::read_only);

(3) r_OQL_Query query("select a$1 from $2 as a where \

 some_cells(a$3 > $4)");

(4) query << select_domain << collection_name

 << where_domain << threshold_value;

(5) r_oql_execute(query, image_set);

 iter = image_set.create_iterator();

 for(iter.reset(); iter.not_done(); iter++)

{

 image = (*iter);

 // work with the image

}

 transaction.commit();

 database.close();

 Explanations

(1) Two domains, a collection name, and a threshold value are defined

to use them at creation stage of the RasML query.

(2) A read-only transaction is started for the retrieval query. Read-only

transactions should be used whenever possible, i.e., when no

rasdaman C++ Developers Guide

Copyright 2003-2009 Peter Baumann / rasdaman GmbH p.19

update operations occur within this transaction, in order to have

maximal performance.

(3) The query object of type r_OQL_Query is created and initialized with

the parameterized query string.

(4) The query parameters are filled using stream operators on the

query object. First, the domain of type r_Minterval for the select

part is applied, then the collection name, the domain for the where

clause, and the threshold value are inserted. The resulting query

string looks like follows:

select a[0:4,0:4]

from CollectionName as a

where some_cells(a[8:9,8:9] > 10)

(5) Finally, the query is executed using the global function

r_oql_execute. The query result is returned in the call-by-refer-

ence parameter image_set. As query results are transient, the data

of the whole result is sent to the client at this point.

rasdaman C++ Developers Guide

Copyright 2003-2009 Peter Baumann / rasdaman GmbH p.20

4 Raslib Classes

4.1 Overview

The raslib classes represent the rasdaman programming interface. It

relies on the ODMG standard with some extensions supporting a smooth

integration of the rasdaman-specific array structures into the conventional

C++ programming model.

raslib classes are categorized in

 Type Classes providing type information for MDD objects,

 Object Classes for handling persistent MDD objects,

 System Classes for general tasks such as session maintenance and

database querying,

 Schema Access Classes to get runtime type information,

 Storage Layout Classes for handling the storage structure, and

 Error Classes for error handling.

rasdaman C++ Developers Guide

Copyright 2003-2009 Peter Baumann / rasdaman GmbH p.21

4.2 Type Classes

Figure 3: Primitive Types

The types r_Long, r_ULong, r_Short, r_UShort, r_Octet,

r_Char, r_Boolean, r_Float, and r_Double are atomic, serving as

base types for MDD objects. Composite types built from atomic (primitive)

or other complex (structured) types are built using the record (struct)

constructor.

Complex numbers, while by nature equivalent to a record structure

{float re,im;}, are provided as a built-in type. Type complex

implements complex numbers on single-precision float components while

complexd implements double-precision.

Null values, i.e., values of cells which have not been assigned a value yet,

always are the numerical zero value of the corresponding type. This

extends in the obvious way to composite cells.

RasDL C++ binding Length Description

Octet r_Octet 8 bit signed integer

Char r_Char 8 bit unsigned integer

Short r_Short 16 bit signed integer

unsigned short r_Ushort 16 bit unsigned integer

Long r_Long 32 bit signed integer

unsigned long r_Ulong 32 bit unsigned integer

Float r_Float 32 bit single precision floating

point

Double r_Double 64 bit double precision float-

ing point

Boolean r_Boolean 1 bit2 true (nonzero value)

false (zero value)

complex r_Complex 64 bit Single precision

complex number

complexd r_Complexd 128 bit Double precision

complex number

2 memory usage is one byte per pixel

r_Long r_ULong r_Short r_UShort r_Octet

r_Char r_Boolean r_Floatr_Double

rasdaman C++ Developers Guide

Copyright 2003-2009 Peter Baumann / rasdaman GmbH p.22

4.3 Object Classes

Object Classes are used for the data exchange with the database. They

consist of classes able to generate and handle persistent arrays, i.e.,

arrays stored in a database, intervals, multidimensional intervals,

multidimensional points, and scalar data which can either be atomic

(primitive) or complex (structured). Figure 4 below shows the object

classes provided by rasdaman.

Figure 4: Object Classes

4.3.1 Class r_Point

Class r_Point handles multidimensional points.

 Example

r_Point pointname(5, 4);

4.3.2 Class r_Sinterval

Class r_Sinterval represents a one-dimensional interval with lower and

upper bound. Both bounds can either be fixed or variable (indicated by an

asterisk '*'). Operations on intervals are defined following conventional

interval arithmetics.

 Example

r_Sinterval(100L, 200L) specifies the interval [100:200].

4.3.3 Class r_Minterval

The spatial domain of an MDD is represented by an object of class

r_Minterval ("multidimensional interval"). It specifies lower and upper

bound of the point set for each dimension of an MDD. Internally, the class

is implemented through an array of intervals of type r_Sinterval.

r_Object

r_Collection

r_Marray

1..*

1

1 1

r_GMarray

r_OId

T

BaseType

r_Point r_Bag

T

r_Sinterval

r_Minterval

r_Scalar

r_Structure r_Primitive

rasdaman C++ Developers Guide

Copyright 2003-2009 Peter Baumann / rasdaman GmbH p.23

 Example

r_Minterval intervalname(“[0:100, 0:300]”);

The object generated by the above expression yields the following output:

intervalname.dimension() 2

intervalname[0].low() 0

intervalname[0].high() 100

4.3.4 Class r_OId

This handles object identifiers. Every array has a unique object identifier it

can be addressed with.

4.3.5 Class r_Object

r_Object is an abstract class. Instances can only be generated from the

non abstract classes inheriting from this class, that is r_Set, r_GMarray

and r_Marray<T>. All these subclasses are capable of having persistent

as well as transient instances and therefore are called persistent capable

classes.

Objects of these classes can be generated using the overloaded new

operator:

(1) void* operator new(size_t size)

(2) void* operator new(size_t size, r_Database *database,

 const char* type_name = 0)

(3) void* operator new(size_t size, const char* type_name)

(1) is used to create transient objects. The only argument is the size of

the new object.

(2) To generate persistent instances one also has to specify the database

the object is to be inserted in.

(3) is the new operator for transient objects carrying type information.

Calling the delete operator

void operator delete(void* obj_ptr)

removes the object from memory and, in case it is a persistent object,

from the database.

4.3.6 Classes r_Marray<T> and r_GMarray

The template class r_Marray<T> represents an MDD object over cell type

T. Class r_GMarray is more generic in that it is able to represent MDD

objects of any base type. This is necessary, firstly, for having a generic

class for query results where the base type is not known at compile time

and, secondly, for usage in the API where the final base types are not

known in advance either.

rasdaman C++ Developers Guide

Copyright 2003-2009 Peter Baumann / rasdaman GmbH p.24

The template class r_Marray<T> for specific base types inherits from

r_GMarray; the constructor r_Marray<T>(r_GMarray&) is provided for

easy transformation to cell type safe m-arrays where the base type is

known at compile time. Operations for accessing single cells are only

available for r_Marray<T>.

4.3.7 Class r_Collection

r_Collection is an abstract class. It is the basic class of a collection.

Possible subclasses are r_Set , r_Bag and r_List. The protected

members isOrdered and allowsDuplicates are not initialized here, they

have to be initialized in the respective subclasses. The method

virtual void insert_element (const T& element, int

no_modification = 0)

inserts an element into the collection. If no_modification is set, the

mark_modified() method of r_Object is not invoked and, therefore, a

modification will not be recognized at the transaction commit point.

4.3.8 Class r_Set

The class implements a set container. It inherits most of the functionality

from r_Collection. The set can not have any duplicates and it is not

ordered. The method

virtual void insert_element (const T& element, int

no_modification = 0)

inserts an element into the collection. If no_modification is set, the

mark_modified() method of r_Object is not invoked and, therefore, a

modification will not be recognized at the commit point.

4.3.9 Classes r_Scalar, r_Primitive and r_Structured

The subclasses of r_Scalar are used to represent query results of the

primitive types r_Boolean, r_Char, r_Octet, r_Short, r_UShort,

r_Long, r_ULong, r_Float, r_Double and types composed of the

primitive ones.

Class r_Primitive supports type-safe value access methods.

r_Structure allows to access its elements by the subscript operator [].

 Examples

The following line shows access to an unsigned short value:

r_Primitive primitive;

...

r_UShort value = primitive.get_ushort();

A structured value consisting of three long values can be accessed as

follows:

r_Structure structuredValue;

...

for(int i=0; i<structuredValue.count_elements(); i++)

rasdaman C++ Developers Guide

Copyright 2003-2009 Peter Baumann / rasdaman GmbH p.25

{

 value = ((r_Primitive&)structuredValue[i]).get_long();

...

}

4.4 System Classes

Figure 5: System Classes

4.4.1 Class r_Database

Class r_Database allows to open and close connections to a specific

database. The database name and the address of a running server

manager must be indicated. Further optional parameters are

 port number (default: 7001),

 access mode (read/write or read-only; by default: read-only),

 login (default: “rasguest”)

 password (default: “rasguest”).

A database object must be instantiated and opened before starting any

transaction on the database, and closed after ending these transactions

(with a commit or abort).

Which Server to Contact?

Note that the server/port to be indicated must address the rasdaman

server manager (not a particular rasdaman server); if in doubt, consult

your system administrator.

 Example

r_Database database;

database.set_servername("Server Name");

database.set_useridentification(“login name”, “passwd”);

database.open("Database Name");

...

database.close();

 Storage Format

The r_Database class also allows to set the storage format, both for

storage in MDD objects in the server and for their transfer between client

and server. See Section 4.6.9 for details.

r_Database r_Transaction r_Ref<T> r_Iterator<T> r_OQL_Queryr_Ref_Any

rasdaman C++ Developers Guide

Copyright 2003-2009 Peter Baumann / rasdaman GmbH p.26

4.4.2 Class r_Transaction

To use a transaction, an object of type r_Transaction has to be in-

stantiated. Transactions can be started either in read/write or read-only

mode, committed, aborted, and checkpointed. It is important to note that

all access, creation, modification, and deletion of persistent objects must

be done within a transaction. In order to achieve maximal performance,

read-only transactions should be used whenever possible, i.e., when no

update operations occur within this transaction. Right now, only one

transaction can be active at a time and no checkpointing is supported.

r_Transaction transaction;

transaction.begin();

...

transaction.commit();

4.4.3 Classes r_Ref<T> and r_Ref_Any

An instance of template class r_Ref<T> is a reference to an instance of

type T and is used to reference persistent sets (r_Set<T>) and MDD

objects (r_GMarray and r_Marray<T>). It behaves like a normal C++

pointer but is capable of managing persistent data of type T within a

transaction. In case the r_Ref<T> pointer is dereferenced (using the

operator ->) and the object it is pointing to is not in the client memory yet,

it is retrieved from the server.

The class r_Ref_Any is defined to support a reference to any type. Its

primary purpose is to handle generic references and allow conversions of

r_Ref<T> in the type hierarchy. A r_Ref_Any object can be used as an

intermediary between any two types r_Ref<X> and r_Ref<Y> where X

and Y are different types. A r_Ref<T> can always be converted to a

r_Ref_Any; there is a function to perform the conversion in the r_Ref<T>

template. Each r_Ref<T> class has a constructor and assignment

operator that takes a reference to a r_Ref_Any.

4.4.4 Class r_Iterator<T>

The template class r_Iterator<T> defines the generic behavior for

iteration. An object of this class can be used within a for loop for iterating

through a collection of MDD objects. All iterators use a consistent protocol

for sequentially returning each element from the collection over which the

iteration is defined. When an iterator is constructed, it is either initialized

with another iterator or is set to null. When an iterator is constructed via

the method r_Collection<T>::create_iterator(), the iterator is

initialized to point to the first element, if there is one.

4.4.5 Class r_OQL_Query and the freestanding function r_oql_execute()

A query statement is represented through an object of class r_OQL_Query

(see Section 3.4). The r_OQL_Query constructor gets a query string which

optionally can be parametrized. In this case, $i indicates the i-th

parameter. The $i do not have to appear in a strict order – for example,

$3 may appear before $2 in the statement.

rasdaman C++ Developers Guide

Copyright 2003-2009 Peter Baumann / rasdaman GmbH p.27

The overloaded stream operator inserts the corresponding parameter

values into the query, at the same time preserving their respective types.

The query object expects parameters in the sequence of $1, $2, and so

on. If any of the $i is not followed by a parameter at the point

r_oql_execute() is called, an r_Error exception object of kind

r_Error_QueryParameterCountInvalid will be thrown.

A query is executed against an open database through invocation of the

freestanding function r_oql_execute(). This overloaded function exists

in three variants:

void r_oql_execute(r_OQL_Query & query)

void r_oql_execute(r_OQL_Query & query,

 r_Set<r_Ref<r_GMarray>> & result_set)

void r_oql_execute(r_OQL_Query & query,

 r_Set<r_Ref<r_Any>> & result_set)

The first version is used for insert, update, and delete statements

where no result is passed back. The second version is used for select

statements where an MDD is returned; in this case, the second parameter

receives the query result. The third case is for general query results which

may also contain non-MDD return values, e.g., resulting from select

oid(…) or select sdom(…) statements. This version will also be used

when the result type of a query is not known in advance (i.e., at compile

time). In this case, an r_Ref_Any object is returned, and the application is

responsible for decoding the proper type. In support of this, r_Ref_Any

objects contain their type information (see Section 4.5.15).

In all cases, the result_set parameter does not have to be initialised,

and any previous contents is discarded by r_oql_execute().

Once a query has been executed via r_oql_execute(), the arguments

associated with the $i parameters are cleared and new arguments must

be supplied.

 Example

The following code fragment creates a query string with two parameters

$1 and $2.

r_OQL_Query query1("select a$1 from $2 as a");

Now two query parameters are generated:

r_Minterval select_domain = r_Minterval(2)

 << r_Sinterval(100L, 199L)

 << r_Sinterval(0L, 149L);

char collection_name[] = "mr";

Next, the parameters are attached to the query using the stream operator:

query1 << select_domain << collection_name;

The resulting query string is

rasdaman C++ Developers Guide

Copyright 2003-2009 Peter Baumann / rasdaman GmbH p.28

“select a[100:199, 0:149] from mr as a”

 Example

The following code shows how to attach an MDD object to an insert

query:

(1) r_Marray<r_Char> mddObject(...);

(2) r_OQL_Query query("insert into mr1 values $1");

(3) query << mddObject;

Explanation:

(1) A transient MDD named mdd is created.

(2) The query object of type r_OQL_Query is initialized with an insert

query statement including a placeholder $1.

(3) The MDD object is attached to the parameter $1 of the query.

4.5 Schema Access Classes

The rasdaman Schema Access Classes enable the user to determine the

type of a query result at runtime.

The following Schema Access Classes are provided:

Figure 6: Schema Access Classes

4.5.1 Class r_Meta_Object

Instances of class r_Meta_Object are used to describe elements of type

information. The class holds a name standing for the type name of its

instances.

r_Meta_Object

r_Base_Type

r_Structure_Type r_Primitive_Type

r_Attribute

r_Property

r_Point_Type

r_OId_Type

r_Sinterval_Type

r_Minterval_Type

r_Marray_Type
r_Collection_Type

r_Type

rasdaman C++ Developers Guide

Copyright 2003-2009 Peter Baumann / rasdaman GmbH p.29

4.5.2 Class r_Type

r_Type is an abstract base class for all type descriptions. It provides

runtime type information through the method type_id() which returns a

value of type r_Type_Id. It is an identifier of the following list:

BOOL, OCTET, CHAR, SHORT, USHORT, LONG, ULONG, FLOAT,

DOUBLE, STRUCTURETYPE, MARRAYTYPE, COLLECTIONTYPE,

SINTERVALTYPE, MINTERVALTYPE, POINTTYPE, OIDTYPE

4.5.3 Class r_Collection_Type

The class represents the type of a collection object. The type of the

collection elements can be determined using method element_type().

4.5.4 Class r_Base_Type

r_Base_Type is an abstract base class for all type descriptions allowed as

MDD base types which can either be primitive or structured types. The

method size() delivers the size of a type instance in bytes.

4.5.5 Class r_Primitive_Type

This class represents all primitive types in the ODMG-conformant

representation of the rasdaman type system.

4.5.6 Class r_Structure_Type

This class represents all user defined structured types in the ODMG-

conformant representation of the rasdaman type system. They are

returned using the method print_status(). Members are described by

r_Attribute instances and represent the state or the structure. They can

be accessed using an iterator of type attribute_iterator. Structures

do not have object identity.

4.5.7 Class r_Property

This class is an abstract base class for all elements describing the state of

an application-defined type. Right now, the only subclass is r_Attribute.

4.5.8 Class r_Attribute

An instance of r_Attribute describes an object or a literal. An attribute

has a name and a type. The name is returned by the inherited method

r_Meta_Object::name(). The type description of an attribute can be

obtained using the inherited method r_Property::type_of(). The

method offset() gives back the byte offset of the corresponding data

area within a structure. If the attribute is not defined within a structure, the

offset is zero.

 Example

The structure

rasdaman C++ Developers Guide

Copyright 2003-2009 Peter Baumann / rasdaman GmbH p.30

struct

{

 char red;

 char green;

 char blue;

};

has three attributes. The name of the third one, for example, is blue, its

type is char and its offset 2.

4.5.9 Class r_Minterval_Type

The class represents the type of an r_Minterval object.

4.5.10 Class r_Sinterval_Type

The class represents the type of an r_Sinterval object.

4.5.11 Class r_Point_Type

The class represents the type of an r_Point object.

4.5.12 Class r_Marray_Type

The class represents the type of an r_Marray object. The base type of the

MDD object can be determined using the method base_type().

4.5.13 Class r_Oid_Type

The class represents the type of an r_Oid object. The only meaningful

comparison operations are equality and inequality of two OIDs.

4.5.14 Entry Points of the Type Schema

The type information can be accessed using one of the following methods:

const r_Type* r_Object::get_type_schema()

const r_Base_Type* r_GMarray::get_base_type_schema()

const r_Type* r_Collection::get_element_type_schema()

4.5.15 Example: Dynamic Type Information of a Query Result

In a query, new structures can be created which are not already defined in

the database schema. For example, the following query forces the server

to introduce an array type based on a 2-component cell structure:

select { img.red, img.green }

from rgb as img

Regardless of a result object’s type being a database type or created on

the fly, the type information can be accessed using the previously

introduced type functions. The following – incomplete – code piece prints

out the type information associated with the MDD objects of a query

result.

rasdaman C++ Developers Guide

Copyright 2003-2009 Peter Baumann / rasdaman GmbH p.31

r_Bag< r_Ref_Any > result_set;

// ...query preparation...

r_oql_execute(query_object, result_set);

r_Iterator< r_Ref_Any > iter = result_set.create_iterator();

for(iter.reset(); iter.not_done(); iter++, i++)

{

 switch(result_set.get_element_type_schema()->type_id())

 {

 case r_Type::MARRAYTYPE:

 r_Ref<r_GMarray>(*iter)->print_status(cout);

 break;

 case r_Type::POINTTYPE:

 r_Ref<r_Point>(*iter)->print_status(cout);

 break;

 // etc.

 }

}

Note that a result set may contain structures other than MDD, e.g., when a

spatial domain or some aggregate scalar is specified in the select clause!

 Example

The query

select sdom(a) [0].lo

from mr as a

returns a set of integer values.

4.6 Storage Layout Classes

A specialized storage structure for MDD objects is used in secondary

storage, which is designed to provide fast access to persistent MDD

objects for the most typical operations on such objects. This storage

structure is configurable so that it is possible to set the different

parameters (storage options) that define it. The storage options for an

MDD object should be set depending on the access characteristics

expected for that object. The current version allows to configure tiling (i.e.,

the subdivision algorithm used for the MDD objects) and storage format

(i.e., the way how MDD tiles are encoded and compressed in the

database and how MDD objects are compressed for client/server

transfer).

Tiling is the subdivision of the MDD object into multidimensional blocks

(tiles) of the same dimensionality as the MDD object. A tile is a

multidimensional subarray of an MDD object. Tiling enables fast access to

parts of an MDD, since only the tiles intersected by an access are

retrieved by rasdaman. Tiling may be done in different ways, resulting in

tiles with different formats and sizes. For example, tiles in a two

dimensional image may be squares or rectangles with different sizes.

rasdaman C++ Developers Guide

Copyright 2003-2009 Peter Baumann / rasdaman GmbH p.32

Figure 7: Tiling of a 2-D image.

In rasdaman, tiling is done according to a tiling scheme. Different tiling

schemes allow the user to specify the subdivision of the domain in

different ways. The choice of the tiling scheme and tiling parameters for

an MDD object should be based on the most common type of access to

the MDD object. The following tiling schemes are provided: aligned,

default, directional, areas of interest and statistical tiling. All tiling schemes

take into account the tile size parameter, which defines the maximum size

in characters for individual tiles of the MDD object.

Aligned tiling divides the object into blocks which are aligned and have the

same specified format. Default tiling is the tiling scheme used in case no

specific tiling scheme is specified for an MDD object. It is a

multidimensional block with sizes of equal lengths along all the directions

of the domain. In directional tiling, the MDD object is divided into blocks

defined by a partition of the domain of the MDD along different directions

of the domain. This subdivision is appropriate for objects which are

accessed through selection of linear ranges along only part of the

directions of the domain.

The storage format indicates how tiles of an object are stored in the

database. This addresses both encoding and compression. Some en-

coding always has to be chosen; for compression, various alternatives are

available, ranging from uncompressed storage over losslessly

compressed to lossy compressed data.

An overview of the storage layout classes is given in the following figure:

rasdaman C++ Developers Guide

Copyright 2003-2009 Peter Baumann / rasdaman GmbH p.33

Figure 8: Storage Layout Classes

4.6.1 Class r_Storage_Layout and r_Domain_Storage_Layout

The classes of the r_Storage_Layout hierarchy are used to express the

storage options for r_Marray objects. If an r_Storage_Layout object is

passed to the r_Marray constructor, the options specified in it determine

the structure of the object in persistent storage, otherwise, the default

storage layout is used. It is important to note, however, that the notiling

option of the client, activated by an environment variable, overrides the

storage layout tiling options specified through r_Storage_Layout. If the

rasdaman client is running with the option notiling, no tiling is done,

independently of the storage layout chosen.

For more advanced control of consistency between storage options and

MDD objects, different subclasses of r_Storage_Layout are defined. The

r_Domain_Storage_Layout class is used for MDD objects with specified

domains. When passed to the MDD constructor, the domain provided to it

as a parameter is checked against that of the MDD object and an error is

generated if there is incompatibility. This design also insures compatibility

between tiling schemes and storage layouts.

4.6.2 Class r_Tiling

Storage layout classes allow setting of the tiling option through instances

of r_Tiling classes. When an r_Marray object is made persistent, in the

rasdaman client the object is divided into blocks according to the tiling

chosen for the object. These tiles are sent to the server and stored to

constitute the MDD object. An index is built to access the tiles belonging

to the MDD object.

r_Tiling

r_Interest_Tiling

r_Accessr_Dir_Tiling

r_Domain_Storage_Layout

r_Dir_Decompose

r_Stat_Tiling r_Default_Tiling

r_Aligned_Tiling

r_Storage_Layout

rasdaman C++ Developers Guide

Copyright 2003-2009 Peter Baumann / rasdaman GmbH p.34

Each derived class of r_Tiling implements a different decomposition

method or tiling scheme. The following tiling classes are provided:

r_Aligned_Tiling

r_Default_Tiling

r_Dir_Tiling

r_Interest_Tiling

r_Stat_Tiling.

All these tiling schemes evaluate the tile size parameter tile_size which

is the size of a tile in bytes. The default tile size is that specified for the

rasdaman client.

Next, these tiling subclasses will be explained.

4.6.3 Class r_Aligned_Tiling

Aligned tiling is the regular tiling of an MDD object. Parameters provided

are the tile format and tile size. The tile format specifies the sizes of a

block along the different directions of the domain. These are interpreted

as relative sizes. For example, if a [0:0,0:1] tile format is specified and

a tile with exactly that format would have a size much smaller than the

given tile size, that tile is stretched proportionally along all directions, so

that the final tiles are twice as long in the second direction as in the first

and have a size as close as possible to the tile size. An open interval

(indicated by an asterisk “*”, see documentation for r_Sinterval and

r_Minterval) along one of the directions specifies a direction of

preferential access. Tiles will be made as long as possible in that

direction.

4.6.4 Class r_Default_Tiling

This class specifies the default tiling scheme. It corresponds to tiling into

blocks with the same length along each of the directions. The length is

calculated based on the tile size, so that tile sizes are as close as possible

to the given tile_size parameter.

4.6.5 Class r_Dir_Tiling

r_Dir_Tiling implements non-regular decomposition along specific

directions of an MDD object. This tiling scheme allows a non-regular

subdivision of the space. The user has to give the number of dimensions

of the space and the decomposition wanted for each dimension.

4.6.6 Class r_Dir_Decompose

The r_Dir_Decompose class is used to specify a decomposition along one

direction, i.e., dimension. The resulting tiling structure consists of a non-

uniform grid where each grid line goes completely through the MDD and

the distance between parallel gridlines is arbitrary.

rasdaman C++ Developers Guide

Copyright 2003-2009 Peter Baumann / rasdaman GmbH p.35

An array of r_Dir_Decompose objects, with one element for each

direction, must be provided.

 Example

To specify tiling restrictions on the first two dimensions of a three-

dimensional MDD object, the following code would apply:

r_Dir_Decompose decomp[3];

decomp[0] << 0 << 20 << 40 << 50;

decomp[1] << 0 << 15 << 20 << 50 << 60;

r_Dir_Tiling Tiling3DMDD(3, decomp, ts);

ts in the last line specifies the tile size. The first and last elements put into

the r_Dir_Decompose object must be the origin and limit of that dimension

or a cross-section of the domain will occur (as if the elements outside the

specification wouldn't mind). In this code example the first dimension is

going from 0 to 50 and the second one from 0 to 60.

4.6.7 Class r_Interest_Tiling and Dlist

The class r_Interest_Tiling implements the areas of interest tiling

algorithm. The user specifies which areas are of interest (areas which are

accessed very often) and tiling is performed accordingly, in order to

optimize access to those areas. Dlist is a double-linked list, which is

used to specify a set of areas of interest to the r_Interest_Tiling

objects.

Figure 9: 2-D MDD object with two areas of interest

 Example:

If the areas [10:20, 50:60] and [18:50, 65:70] are of interest in the

[0:1000,0:1000] domain, the following code does specification:

{

 ...

 r_Minterval domain(“[0:1000,0:1000] ”);

 r_Minterval interest1(“10:20,50:60] ”);

 r_Minterval interest2(“[18:50,65:70] ”);

 DList< r_Minterval > interest_areas;

 interest_areas.insert_element(interest1);

 interest_areas.insert_element(interest2);

 r_Interest_Tiling(interest_areas);

rasdaman C++ Developers Guide

Copyright 2003-2009 Peter Baumann / rasdaman GmbH p.36

 ...

}

In addition to the list of areas of interest, two further parameters can be

passed to the constructor, which are default arguments of the constructor :

r_Interest_Tiling(DList<r_Minterval>& ias,

 Tilesize_Limit strat = SUB_TILING,

 unsigned long ts=RMInit::tileSize)

ts specifies the tile size to be used, whereas strat is the tile size

limitation strategy. The areas of interest algorithm splits the multi-

dimensional array into tiles aligned with the areas of interest so that future

accesses to those areas result in no cells outside the area being loaded

from disk. In order to perform this, the algorithm first calculates a

maximum partition of the space using the directional tiling algorithm. Since

this is suboptimal and the resulting tiles might have sizes greater than

tileSize it then performs further merges or subtiling, depending on the

tile size limitation strategy. The supported options for it are the following:

 NO_LIMIT: The blocks generated can have any size.

 REGROUP: Only when performing grouping/merging of tiles, the size of

the resulting tile of two merges is checked against tileSize. If it is

larger, they are not merged. Tiles larger than tileSize may exist (for

instance, if the user specifies an interest area with a size larger than

tileSize).

 SUB_TILING: In this strategy, regrouping is done regardless of the size

of the generated tiles. After all the blocks are created, sub-tiling is

performed on those whose size is larger than the tile size.

 REGROUP_AND_SUBTILING: This combines the last two strategies.

When merging blocks, tiles larger than tileSize are never created

and, when the final tiles are all created, sub-tiling is performed on

those whose size is larger then tileSize.

4.6.8 Class r_Stat_Tiling and r_Access

These classes support statistic tiling and specification of access patterns,

respectively. Statistic tiling splits MDD objects based on the access

patterns passed to it as a parameter. It actually detects areas of interest

out of a set of accesses and then performs tiling by using the areas of

interest tiling algorithm. In order to determine the areas of interest, the

algorithm performs a check of overlapping accesses to reduce accesses

which correspond to the same area of interest to one single area of

interest. In this step, the criteria used to reduce a set of accesses to a

single area of interest is that if a group of accesses are near up to a given

threshold, then they correspond to a single area of interest which is the

minimum interval covering the accesses.

The statistic tiling algorithm then eliminates some of the areas of interest.

It performs a check of the number of times each of the detected areas was

accessed. Those which were accessed less than a given threshold are

rasdaman C++ Developers Guide

Copyright 2003-2009 Peter Baumann / rasdaman GmbH p.37

eliminated (they are accessed too few times to be considered areas of

interest).

Three parameters are passed in the constructor of the r_Stat_Tiling

class:

r_Stat_Tiling(unsigned int border_th = DEF_BORDER_THR,

 double interesting_th = DEF_INTERESTING_THR,

 unsigned long ts = RMInit::tileSize)

border_th is the border threshold for considering two access patterns to

be the same, interesting_th is the interesting threshold, i.e., the

percentage of accesses that must take place so that an area is considered

being of interest when performing tiling and also ts, the tile size.

A call to update_stat_information() should be made prior to

performing tiling, so that the statistic information about the accesses to the

object can be updated and the tiling operation prepared.

void r_Stat_ r_Access::update_stat_information(

 DList< r_Access > & stat_info)

This method inputs the statistic information into the class and calculates

the new interest areas that will be used to perform tiling on the object.

r_Stat_Tiling contains a list with the statistical information. This list is

updated by the method. At the end, the list will contain the filtered and

updated accesses count. This information can be used again as input to

the method, or it can be stored for later usage.

The class r_Access represents an access pattern to a certain object.

r_Stat_Tiling receives a list of these objects so that an appropriate

tiling can be defined. The r_Access constructor

r_Access(const r_Minterval& region,

 unsigned long accesses = 1)

takes as parameter the interval and the number of times the MDD

subarray with domain region was accessed.

4.6.9 Class r_Convertor and Subclasses

The storage format indicator specifies the compression method used to

compress / decompress tiles written to / retrieved from the database.

The transfer format indicator specifies the compression method used to

compress/decompress tiles when transferred between client and server.

By default storage and transfer format is r_Array which means encoding

in the server’s main memory format, without any compression. The

r_Database function set_transfer_format() allows to change transfer

format and compression, for both directions uniformly:

rasdaman C++ Developers Guide

Copyright 2003-2009 Peter Baumann / rasdaman GmbH p.38

void set_transfer_format(r_Data_Format format,

 const char *formatParams=NULL)

The storage format in the server for MDD objects newly created by the

client and its currently open transaction is set through

set_storage_format():

void set_storage_format(r_Data_Format format,

 const char *formatParams=NULL)

Both functions understand these parameters, defined in the enumeration

type enum r_Data_Format in module raslib, see Table 1.

Table 1: Storage and transfer formats and their parameters

Compression

type

Enumeration

constant

Description

“direct”

storage

r_Array no compression,

row-major memory representation

Data

exchange

format

r_TIFF TIFF format (2-D images, non-

compressing)

r_JPEG JPEG format (2-D, lossy compression;

not recommended!)

r_HDF HDF format (n-D, non-compressing)

r_PNG PNG format (2-D images, lossless

compression)

r_BMP BMP format (2-D images, non-

compressing)

r_VFF VFF format (3-D data, non-

compressing)

r_PPM PPM format (2-D binary/gray/colour

images, lossless)

R_TOR TOR format (used for 2-D geo laser

scan images, non-compressing)

R_DEM ASCII format for 2-D digital elevation

data (non-compressing)

Dedicated

compression

formats

(lossy if not

indicated

otherwise)

R_Auto_

Compression

automatic compression (lossless)

R_Zlib ZLIB compression (lossless)

R_RLE RLE compression (lossless)

R_Wavelet

_Haar

Haar Wavelet compression

rasdaman C++ Developers Guide

Copyright 2003-2009 Peter Baumann / rasdaman GmbH p.39

r_Wavelet

_Daubechies

Daubechies 4-tap Wavelet compression

r_Sep_Zlib ZLIB compression, compress base

types separately (lossless)

r_Sep_RLE RLE compression, compress base types

separately (lossless)

r_Wavelet

_Daub

Daubechies n-tap Wavelet

compression, n=6, 8, ..., 18, 20

 r_Wavelet

_Least

Least asymmetric n-tap Wavelet comp.,

n=8, 10, ..., 18, 20

 r_Wavelet

_Coiflet

Coiflet n-tap Wavelet compression, n=6,

12, 18, 24, 30

 r_Wavelet

_Qhaar

Lossy Haar Wavelet compression

 Recommendations

 If space is not an issue, use r_Array storage for optimal performance.

 If compression is desired, use r_RLE for relatively homogeneous data,

r_Zlib in general. R_Sep_Zlib and r_sep_RLE give an advantage in the

compression rate whenever the cell type has a larger number (say, 3

and above) of cell components. All these compress lossless, i.e. a

compressed object inserted into the database will look the same after

extraction.

 Use lossy compression only if you are sure that database users can

live with information being filtered out of the original data.

 Almost all of the above formats have further parameters which allow

fine tuning. They are passed in a string as comma-separated

“name=value” pairs. See the r_Convertor class HTML documentation

for the admissible names and values.

 Moreover, a white paper is available from rasdaman GmbH if you really

want to go into the gory details.

 Warning

From the “dedicated compression formats” listed above, only the RLE,

SepRLE, Zlib, and SepZlib algorithms are fully released. The wavelet

algorithms are provided as beta versions only, using them for non-

experimental purposes is not recommended in the current version.

4.7 Error Classes

Figure 10 gives an overview on the rasdaman classes used to report on

error situations:

rasdaman C++ Developers Guide

Copyright 2003-2009 Peter Baumann / rasdaman GmbH p.40

Figure 10: rasdaman Error Classes

4.7.1 Class r_Error

This class implements the relevant part of the ODMG C++ binding's

r_Error class. It extends exception handling through deriving special

classes for MDD specific errors. An error object consists of

 an error number which serves to uniquely identify the error,

 an error kind,

 an error text which verbally describes the error.

The error number, hence, serves as an index to a generic textual

description of the error.

Error texts are loaded from the text file errtxts located in

$RMANHOME/bin using the initialisation function initTextTable(). This

mechanism allows the system administrator to translate error messages

into target languages other than English.

If no error number is specified, the error kind will be used as error text.

The error description is received calling the member function what().

Further information on error messages can be found in Error Messages.

 Example

The following code fragment shows a typical try-catch block printing any

potential error reported by rasdaman.

try

{

 // rasdaman access

}

catch(r_Error& errorObj)

{

 cout << errorObj.what() << endl;

}

4.7.2 Class r_Eno_interval

This class represents an error object saying that the result is not an

interval.

r_Edim_mismatch

r_Eindex_violation

r_Error

r_Einit_overflow
overflow

r_Eno_cell

r_Eno_interval

r_Equery_execution_failed

rasdaman C++ Developers Guide

Copyright 2003-2009 Peter Baumann / rasdaman GmbH p.41

4.7.3 Class r_Eindex_violation

r_Eindex_violation represents an error object saying that the specified

index is not within the bounds of the MDD object. In case the spatial

domain of object a is [0:199] and the user asks for a[300] an error

message of this class is raised.

4.7.4 Class r_Edim_mismatch

This class represents an error object saying that the dimensionalities of

two objects do not match.

4.7.5 Class r_Eno_cell

r_Eno_cell represents an error object saying that the result is no cell.

This happens f.e. if the cast operator for casting to the base type of class

r_Marray is invoked on an object which is not 'zero-dimensional'.

4.7.6 Class r_Einit_overflow

This class represents an error object saying that an initialization overflow

occured. This happens, e.g., if the stream operator is invoked more often

than the object has dimensions.

4.7.7 Class r_Equery_execution_failed

The class is used for errors occuring through query execution. In most

cases, the position which caused the error can be fixed. This position is

specified by line number, column number, and the token which is involved.

Additionally, the class is generic concerning the error type. Different error

types can be specified by stating the error number.

 Example

The following code segment shows possible error handling after query

execution:

try

{

 // execute a rasdaman query

}

catch(r_Equery_execution_failed& errorObj)

{

 cout << errorObj.what() << endl;

 cout << “Line No “ << errorObj.get_lineno();

 cout << “Column No “ << errorObj.get_columnno();

 cout << “Token “ << errorObj.get_token();

}

rasdaman C++ Developers Guide

Copyright 2003-2009 Peter Baumann / rasdaman GmbH p.42

5 Linking MDD with Other Data

5.1 Sessions

Applications always maintain raster data and descriptive alphanumeric

data. The latter often are called metadata – a term we adopt for the

purpose of this discussion. Actually, all over the world a lot of effort

already has been put into metadata modelling, and many database

structures and metadata applications have been developed successfully.

rasdaman does not reinvent the wheel: metadata remain unchanged in

their (relational or object-oriented) database; they are not touched by

rasdaman, but remain under the sole control of the underlying

conventional DBMS (in the rasdaman documentation also referred to as

“base DBMS”).

Therefore, to work simultaneously with rasdaman and metadata, an

application has to open both a rasdaman database and the database

containing the metadata, and it must begin separate transactions in both

databases.

rasdaman C++ Developers Guide

Copyright 2003-2009 Peter Baumann / rasdaman GmbH p.43

Opening of database in rasdaman and the metadata DBMS are

completely independent from each other, likewise are transactions in both

systems. They can be nested or interleaved in any way.

In order to embed MDD objects and MDD collections in underlying

databases, object identifiers and collection names may be used. These

constitute references to rasdaman objects (which are stored in the base

DBMS).

5.2 Collection Names

MDD collections in rasdaman must be named. This name can then be

used by an application as a reference to the MDD collection. The most

typical usage of these collection names is their storage in a base DBMS

object or tuple in order to reference an MDD collection which is related to

the object or tuple.

5.3 Object Identifiers

Each MDD object is uniquely identified in rasdaman by an object identifier.

Object identifiers are implemented by the r_OId class. A globally unique

object identifier has three components describing

 the system where it was created (system name),

 the database (base name) and

 the local object ID within the database.

The object identifier of a rasdaman object is returned by:

r_OId& r_Object::get_oid()

The object identifier may be used as a reference in an underlying data-

base.

To be used as a reference in the underlying database the object identifier

of a rasdaman object is stored as a member in an object of the underlying

database. This is illustrated by the following example:

rasdaman C++ Developers Guide

Copyright 2003-2009 Peter Baumann / rasdaman GmbH p.44

class SatelliteImage

{

 private:

 Date acquisitionDate;

 Location acquisitionLoc;

 // local reference to rasdaman MDD object:

 double imageRasOid;

 ...

 ...

}

The member variable imageRasOid has to be translated into a rasdaman

object identifier. This translation is done by the r_OId constructor:

r_OId::r_OId(const char*)

The string representation for a specific object identifier is returned by:

const char* r_OId::get_string_representation()

Of course, alternatively the object identifier could be stored in its string

representation.

rasdaman C++ Developers Guide

Copyright 2003-2009 Peter Baumann / rasdaman GmbH p.45

6 Compilation and Linkage of Client Programs

6.1 Compilation

C++ applications using rasdaman have to include the header file

rasdaman.hh which resides in $RMANHOME/include. Technically,

rasdaman.hh includes further header files taken from the subdirectories of

$RMANHOME/include.

The class library makes intensive use of templates. As templates are

handled differently by the various compilers, individual measures have to

be taken. To this end, the header files are instrumented to recognise the

variable OSTYPE indicating the system platform. For example, setting

OSTYPE to linux-gnu (case-sensitive!) indicates a Linux/Gnu environ-

ment, whereas the value solaris indicates a SUN/ Solaris platform. You

should contact your dealer to find out which platforms are supported.

While in the deliverable sources (including the Makefiles provided)

platform issues are dealt with, it nevertheless is important to understand

rasdaman C++ Developers Guide

Copyright 2003-2009 Peter Baumann / rasdaman GmbH p.46

the particularities. Therefore, some considerations follow next. If in doubt,

you may want to contact the hotline.

 Gnu

With the Gnu C++ compiler, the good way to handle templates is by early

template instantiation using the compile flag

-DEARLY_TEMPLATE. A template instantiation source file,

template_inst.hh, is provided in the $RMANHOME/include/raslib

directory; if the OSTYPE variable is set to linux-gnu, then this instantiation

file will be included automatically.

 Microsoft

With the Microsoft Visual C++ compiler, situation is similar as with Gnu

above: it also needs early template instantiation.

 Solaris

With the SUN-provided C++ compiler under Solaris, template instantiation

at compile time is done by looking at the .cc files in the

$RMANHOME/include subdirectories.

6.2 Linkage

For the linkage of an executable several libraries are needed. Those

delivered with rasdaman are located in the $RMANHOME/lib directory.

One common problem are the dynamic libraries needed, such as

libXmu.so. Usually there are different versions around. The version

needed by a rasdaman application can be found out with the Unix ldd

command which, for example, states:

 libtiff.so.3 => /usr/lib/libtiff.so.3 (0x4001b000)

 libstdc++-libc6.1-2.so.3 => not found

 libXmu.so.6 => /usr/X11R6/lib/libXmu.so.6 (0x4005e000)

 libXt.so.6 => /usr/X11R6/lib/libXt.so.6 (0x40071000)

 libX11.so.6 => /usr/X11R6/lib/libX11.so.6 (0x400bc000)

 libz.so.1 => /usr/lib/libz.so.1 (0x40160000)

 libm.so.6 => /lib/libm.so.6 (0x4016f000)

 libc.so.6 => /lib/libc.so.6 (0x4018c000)

 libjpeg.so.62 => /usr/lib/libjpeg.so.62 (0x40281000)

 libSM.so.6 => /usr/X11R6/lib/libSM.so.6 (0x402a0000)

 libICE.so.6 => /usr/X11R6/lib/libICE.so.6 (0x402ab000)

 libXext.so.6 => /usr/X11R6/lib/libXext.so.6 (0x402c2000)

 /lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

As can be seen in the second line, libstdc++-libc6.1-2.so.3 cannot

be found whereas all other references to dynamic libraries can be

resolved. Sometimes a straightforward link to an older version helps, such

as

rasdaman C++ Developers Guide

Copyright 2003-2009 Peter Baumann / rasdaman GmbH p.47

ln –s libstdc++-libc6.1-2.so.2 \

 $RMANHOME/lib/libstdc++-libc6.1-2.so.3

Obviously very much care should be taken when fooling the system like

this, and it is certainly not the recommended way.

Another common problem is to put the libraries into the right order in the

link command, and which of them have to be linked twice to resolve all

referenced symbols.

Some working examples can be found in the Makefiles of the delivered

examples.

6.3 Client Environment Parameters

To allow for easier application steering, raslib evaluates the environment

parameter RMANCLIENTOPT at program start-up. This variable can contain

options similar to command line option syntax.

If contradicting options are set (e.g., -tiling and -notiling), then the

last occurrence wins.

 Options Known

-timeout t set server communication timeout to t seconds

 (default: 3600)

-notimeout disable timeout, wait forever if necessary

-tilesize s set tile size to s bytes (default: 100000)

-notiling disable client-side tiling

-l logfile set log stream to logfile (default: ./client.log)

 Example

The following shell dialog shows how an environment is set before

invoking a rasdaman client. Settings done are: use timeout of 5 seconds,

write log output to /dev/null.

tcsh> export RMANCLIENTOPT=”-timeout 5 –l /dev/null”

tcsh> rview

6.4 The Example Programs

An example program is delivered in $RMANHOME/examples/c++. This

query program sends a rasql query to the rasdaman server and prints the

result retrieved.

The code is documented and produces ample screen output, so it should

be self explanatory. The programs are built by invoking make in the

corresponding subdirectory.

rasdaman C++ Developers Guide

Copyright 2003-2009 Peter Baumann / rasdaman GmbH p.48

 Note

Before the test programs can be used, a database has to be created and

schema information has to be imported.

rasdl --basname db -c

rasdl --basename db -r odl/basictypes.odl -i

Further information on the rasdl processor can be found in the Query

Language Guide, Section 4.

6.5 Copyright Note

raslib contains code for password encoding based on MD5, located in the

C++ library $RMANHOME/lib/libcrypto.a. This library must be linked to

rasdaman applications in order to make them work.

Provision of this code is done in accordance with the GNU Library General

Public License (see www.gnu.org).

6.6 Legal Note

Note that under some legislations usage and/or distribution of crypto-

graphy code may be prohibited by law. If you have obtained the above-

mentioned library in or from a region under such a legislation, whatever

you do with it is fully under your own responsibility. Please inform

rasdaman GmbH about the source where you have it obtained from so

that we can take action against the violator.

rasdaman C++ Developers Guide

Copyright 2003-2009 Peter Baumann / rasdaman GmbH p.49

7 HTML Documentation

All classes are described extensively in a set of HTML files shipped with

the software. Starting point into the whole documentation is

$RMANHOME/doc/index.html. Follow the “raslib” link to enter the

description of the C++ interface.

The documentation can be viewed with any Web browser. Only graphical

traversal between classes requires Java enabled; however, all links are

available in textual form, too.

Top-level entry to the documentation shows the alphabetical listing of

definitions, classes and functions; alternatively the class hierarchy display

can be selected. Every class name is linked to the related class

documentation. The subclass / superclass relations are indicated as

indentation levels in the class list. Clicking a class name expands into the

full class documentation consisting of three components.

First, there is the class inheritance hierarchy, including links to the direct

subclasses and superclasses. The second part gives a short description

of all class components, some of which have additional links to a more

detailed documentation in the third part of the page. In this third part there

is a detailed description of what the class does. Every time a class is used

rasdaman C++ Developers Guide

Copyright 2003-2009 Peter Baumann / rasdaman GmbH p.50

inside method declarations as either a parameter or return value, a link to

the documentation of this class is provided.

