"""
This module defines tensors with abstract index notation.
The abstract index notation has been first formalized by Penrose.
Tensor indices are formal objects, with a tensor type; there is no
notion of index range, it is only possible to assign the dimension,
used to trace the Kronecker delta; the dimension can be a Symbol.
The Einstein summation convention is used.
The covariant indices are indicated with a minus sign in front of the index.
For instance the tensor ``t = p(a)*A(b,c)*q(-c)`` has the index ``c``
contracted.
A tensor expression ``t`` can be called; called with its
indices in sorted order it is equal to itself:
in the above example ``t(a, b) == t``;
one can call ``t`` with different indices; ``t(c, d) == p(c)*A(d,a)*q(-a)``.
The contracted indices are dummy indices, internally they have no name,
the indices being represented by a graph-like structure.
Tensors are put in canonical form using ``canon_bp``, which uses
the Butler-Portugal algorithm for canonicalization using the monoterm
symmetries of the tensors.
If there is a (anti)symmetric metric, the indices can be raised and
lowered when the tensor is put in canonical form.
"""
from __future__ import print_function, division
from collections import defaultdict
from sympy.core import Basic, sympify, Add, S
from sympy.core.symbol import Symbol, symbols
from sympy.core.compatibility import string_types
from sympy.combinatorics.tensor_can import get_symmetric_group_sgs, bsgs_direct_product, canonicalize, riemann_bsgs
from sympy.core.containers import Tuple
from sympy import Matrix, Rational
from sympy.external import import_module
from sympy.utilities.decorator import doctest_depends_on
[docs]class TIDS(object):
"""
Tensor internal data structure. This contains internal data about
components of a tensor expression, its free and dummy indices.
To create a `TIDS` object via the standard constructor, the required
arguments are
``components`` `TensorHead` objects representing the components
of the tensor expression.
``free`` Free indices in their internal representation.
``dum`` Dummy indices in their internal representation.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, TIDS, tensorhead
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> m0, m1, m2, m3 = tensor_indices('m0,m1,m2,m3', Lorentz)
>>> T = tensorhead('T', [Lorentz]*4, [[1]*4])
>>> TIDS([T], [(m0, 0, 0), (m3, 3, 0)], [(1, 2, 0, 0)])
TIDS([T(Lorentz,Lorentz,Lorentz,Lorentz)], [(m0, 0, 0), (m3, 3, 0)], [(1, 2, 0, 0)])
Details
=======
In short, this has created the components, free and dummy indices for
the internal representation of a tensor T(m0, m1, -m1, m3).
Free indices are represented as a list of triplets. The elements of
each triplet identify a single free index and are
1. TensorIndex object
2. position inside the component
3. component number
Dummy indices are represented as a list of 4-plets. Each 4-plet stands
for couple for contracted indices, their original TensorIndex is not
stored as it is no longer required. The four elements of the 4-plet
are
1. position inside the component of the first index.
2. position inside the component of the second index.
3. component number of the first index.
4. component number of the second index.
"""
def __init__(self, components, free, dum):
self.components = components
self.free = free
self.dum = dum
self._ext_rank = len(self.free) + 2*len(self.dum)
[docs] def get_components_with_free_indices(self):
"""
Get a list of components with their associated indices.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, TIDS, tensorhead
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> m0, m1, m2, m3 = tensor_indices('m0,m1,m2,m3', Lorentz)
>>> T = tensorhead('T', [Lorentz]*4, [[1]*4])
>>> A = tensorhead('A', [Lorentz], [[1]])
>>> t = TIDS.from_components_and_indices([T], [m0, m1, -m1, m3])
>>> t.get_components_with_free_indices()
[(T(Lorentz,Lorentz,Lorentz,Lorentz), [(m0, 0, 0), (m3, 3, 0)])]
>>> t2 = (A(m0)*A(-m0))._tids
>>> t2.get_components_with_free_indices()
[(A(Lorentz), []), (A(Lorentz), [])]
>>> t3 = (A(m0)*A(-m1)*A(-m0)*A(m1))._tids
>>> t3.get_components_with_free_indices()
[(A(Lorentz), []), (A(Lorentz), []), (A(Lorentz), []), (A(Lorentz), [])]
>>> t4 = (A(m0)*A(m1)*A(-m0))._tids
>>> t4.get_components_with_free_indices()
[(A(Lorentz), []), (A(Lorentz), [(m1, 0, 1)]), (A(Lorentz), [])]
>>> t5 = (A(m0)*A(m1)*A(m2))._tids
>>> t5.get_components_with_free_indices()
[(A(Lorentz), [(m0, 0, 0)]), (A(Lorentz), [(m1, 0, 1)]), (A(Lorentz), [(m2, 0, 2)])]
"""
components = self.components
ret_comp = []
free_counter = 0
# dum_counter1 = 0
# dum_counter2 = 0
if len(self.free) == 0:
return [(comp, []) for comp in components]
for i, comp in enumerate(components):
c_free = []
while free_counter < len(self.free):
if not self.free[free_counter][2] == i:
break
c_free.append(self.free[free_counter])
free_counter += 1
if free_counter >= len(self.free):
break
ret_comp.append((comp, c_free))
return ret_comp
@staticmethod
[docs] def from_components_and_indices(components, indices):
"""
Create a new `TIDS` object from `components` and `indices`
``components`` `TensorHead` objects representing the components
of the tensor expression.
``indices`` `TensorIndex` objects, the indices. Contractions are
detected upon construction.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, TIDS, tensorhead
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> m0, m1, m2, m3 = tensor_indices('m0,m1,m2,m3', Lorentz)
>>> T = tensorhead('T', [Lorentz]*4, [[1]*4])
>>> TIDS.from_components_and_indices([T], [m0, m1, -m1, m3])
TIDS([T(Lorentz,Lorentz,Lorentz,Lorentz)], [(m0, 0, 0), (m3, 3, 0)], [(1, 2, 0, 0)])
In case of many components the same indices have slightly different
indexes:
>>> A = tensorhead('A', [Lorentz], [[1]])
>>> TIDS.from_components_and_indices([A]*4, [m0, m1, -m1, m3])
TIDS([A(Lorentz), A(Lorentz), A(Lorentz), A(Lorentz)], [(m0, 0, 0), (m3, 0, 3)], [(0, 0, 1, 2)])
"""
tids = None
cur_pos = 0
for i in components:
tids_sing = TIDS([i], *TIDS.free_dum_from_indices(*indices[cur_pos:cur_pos+i.rank]))
if tids is None:
tids = tids_sing
else:
tids *= tids_sing
cur_pos += i.rank
if tids is None:
tids = TIDS([], [], [])
tids.free.sort(key=lambda x: x[0].name)
tids.dum.sort()
return tids
[docs] def to_indices(self):
"""
Get a list of indices, creating new tensor indices to complete dummy indices.
"""
component_indices = []
for i in self.components:
component_indices.append([None]*i.rank)
for i in self.free:
component_indices[i[2]][i[1]] = i[0]
for i, dummy_pos in enumerate(self.dum):
tensor_index_type = self.components[dummy_pos[2]].args[1].args[0][0]
dummy_index = TensorIndex('dummy_index_{0}'.format(i), tensor_index_type)
component_indices[dummy_pos[2]][dummy_pos[0]] = dummy_index
component_indices[dummy_pos[3]][dummy_pos[1]] = -dummy_index
indices = []
for i in component_indices:
indices.extend(i)
return indices
@staticmethod
[docs] def free_dum_from_indices(*indices):
"""
Convert ``indices`` into ``free``, ``dum`` for single component tensor
``free`` list of tuples ``(index, pos, 0)``,
where ``pos`` is the position of index in
the list of indices formed by the component tensors
``dum`` list of tuples ``(pos_contr, pos_cov, 0, 0)``
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, TIDS
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> m0, m1, m2, m3 = tensor_indices('m0,m1,m2,m3', Lorentz)
>>> TIDS.free_dum_from_indices(m0, m1, -m1, m3)
([(m0, 0, 0), (m3, 3, 0)], [(1, 2, 0, 0)])
"""
n = len(indices)
if n == 1:
return [(indices[0], 0, 0)], []
# find the positions of the free indices and of the dummy indices
free = [True]*len(indices)
index_dict = {}
dum = []
for i, index in enumerate(indices):
name = index._name
typ = index._tensortype
contr = index._is_up
if (name, typ) in index_dict:
# found a pair of dummy indices
is_contr, pos = index_dict[(name, typ)]
# check consistency and update free
if is_contr:
if contr:
raise ValueError('two equal contravariant indices in slots %d and %d' %(pos, i))
else:
free[pos] = False
free[i] = False
else:
if contr:
free[pos] = False
free[i] = False
else:
raise ValueError('two equal covariant indices in slots %d and %d' %(pos, i))
if contr:
dum.append((i, pos, 0, 0))
else:
dum.append((pos, i, 0, 0))
else:
index_dict[(name, typ)] = index._is_up, i
free = [(index, i, 0) for i, index in enumerate(indices) if free[i]]
free.sort()
return free, dum
@staticmethod
[docs] def mul(f, g):
"""
The algorithms performing the multiplication of two TIDS instances.
In short, it forms a new TIDS object, joining components and indices,
checking that abstract indices are compatible, and possibly contracting
them.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, TIDS, tensorhead
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> m0, m1, m2, m3 = tensor_indices('m0,m1,m2,m3', Lorentz)
>>> T = tensorhead('T', [Lorentz]*4, [[1]*4])
>>> A = tensorhead('A', [Lorentz], [[1]])
>>> tids_1 = TIDS.from_components_and_indices([T], [m0, m1, -m1, m3])
>>> tids_2 = TIDS.from_components_and_indices([A], [m2])
>>> tids_1 * tids_2
TIDS([T(Lorentz,Lorentz,Lorentz,Lorentz), A(Lorentz)],\
[(m0, 0, 0), (m3, 3, 0), (m2, 0, 1)], [(1, 2, 0, 0)])
In this case no contraction has been performed.
>>> tids_3 = TIDS.from_components_and_indices([A], [-m3])
>>> tids_1 * tids_3
TIDS([T(Lorentz,Lorentz,Lorentz,Lorentz), A(Lorentz)],\
[(m0, 0, 0)], [(1, 2, 0, 0), (3, 0, 0, 1)])
Free indices m3 and -m3 are identified as a contracted couple, and are
therefore transformed into dummy indices.
A wrong index construction (for example, trying to contract two
contravariant indices or using indices multiple times) would result in
an exception:
>>> tids_4 = TIDS.from_components_and_indices([A], [m3])
>>> # This raises an exception:
>>> # tids_1 * tids_4
"""
index_up = lambda u: u if u.is_up else -u
# find out which free indices of f and g are contracted
free_dict1 = dict([(i if i.is_up else -i, (pos, cpos, i)) for i, pos, cpos in f.free])
free_dict2 = dict([(i if i.is_up else -i, (pos, cpos, i)) for i, pos, cpos in g.free])
free_names = set(free_dict1.keys()) & set(free_dict2.keys())
# find the new `free` and `dum`
nc1 = len(f.components)
dum2 = [(i1, i2, c1 + nc1, c2 + nc1) for i1, i2, c1, c2 in g.dum]
free1 = [(ind, i, c) for ind, i, c in f.free if index_up(ind) not in free_names]
free2 = [(ind, i, c + nc1) for ind, i, c in g.free if index_up(ind) not in free_names]
free = free1 + free2
dum = f.dum + dum2
for name in free_names:
ipos1, cpos1, ind1 = free_dict1[name]
ipos2, cpos2, ind2 = free_dict2[name]
cpos2 += nc1
if ind1._is_up == ind2._is_up:
raise ValueError('wrong index construction {0}'.format(ind1))
if ind1._is_up:
new_dummy = (ipos1, ipos2, cpos1, cpos2)
else:
new_dummy = (ipos2, ipos1, cpos2, cpos1)
dum.append(new_dummy)
return (f.components + g.components, free, dum)
def __mul__(self, other):
return TIDS(*self.mul(self, other))
def __str__(self):
return "TIDS({0}, {1}, {2})".format(self.components, self.free, self.dum)
def __repr__(self):
return self.__str__()
[docs] def sorted_components(self):
"""
Returns a TIDS with sorted components
The sorting is done taking into account the commutation group
of the component tensors.
"""
from sympy.combinatorics.permutations import _af_invert
cv = list(zip(self.components, range(len(self.components))))
sign = 1
n = len(cv) - 1
for i in range(n):
for j in range(n, i, -1):
c = cv[j-1][0].commutes_with(cv[j][0])
if c not in [0, 1]:
continue
if (cv[j-1][0]._types, cv[j-1][0]._name) > \
(cv[j][0]._types, cv[j][0]._name):
cv[j-1], cv[j] = cv[j], cv[j-1]
if c:
sign = -sign
# perm_inv[new_pos] = old_pos
components = [x[0] for x in cv]
perm_inv = [x[1] for x in cv]
perm = _af_invert(perm_inv)
free = [(ind, i, perm[c]) for ind, i, c in self.free]
free.sort()
dum = [(i1, i2, perm[c1], perm[c2]) for i1, i2, c1, c2 in self.dum]
dum.sort(key=lambda x: components[x[2]].index_types[x[0]])
return TIDS(components, free, dum), sign
[docs] def canon_args(self):
"""
Returns ``(g, dummies, msym, v)``, the entries of ``canonicalize``
see ``canonicalize`` in ``tensor_can.py``
"""
# to be called after sorted_components
from sympy.combinatorics.permutations import _af_new
# types = list(set(self._types))
# types.sort(key = lambda x: x._name)
n = self._ext_rank
g = [None]*n + [n, n+1]
pos = 0
vpos = []
components = self.components
for t in components:
vpos.append(pos)
pos += t._rank
# ordered indices: first the free indices, ordered by types
# then the dummy indices, ordered by types and contravariant before
# covariant
# g[position in tensor] = position in ordered indices
for i, (indx, ipos, cpos) in enumerate(self.free):
pos = vpos[cpos] + ipos
g[pos] = i
pos = len(self.free)
j = len(self.free)
dummies = []
prev = None
a = []
msym = []
for ipos1, ipos2, cpos1, cpos2 in self.dum:
pos1 = vpos[cpos1] + ipos1
pos2 = vpos[cpos2] + ipos2
g[pos1] = j
g[pos2] = j + 1
j += 2
typ = components[cpos1].index_types[ipos1]
if typ != prev:
if a:
dummies.append(a)
a = [pos, pos + 1]
prev = typ
msym.append(typ.metric_antisym)
else:
a.extend([pos, pos + 1])
pos += 2
if a:
dummies.append(a)
numtyp = []
prev = None
for t in components:
if t == prev:
numtyp[-1][1] += 1
else:
prev = t
numtyp.append([prev, 1])
v = []
for h, n in numtyp:
if h._comm == 0 or h._comm == 1:
comm = h._comm
else:
comm = TensorManager.get_comm(h._comm, h._comm)
v.append((h._symmetry.base, h._symmetry.generators, n, comm))
return _af_new(g), dummies, msym, v
[docs] def perm2tensor(self, g, canon_bp=False):
"""
Returns a `TIDS` instance corresponding to the permutation ``g``
``g`` permutation corresponding to the tensor in the representation
used in canonicalization
``canon_bp`` if True, then ``g`` is the permutation
corresponding to the canonical form of the tensor
"""
vpos = []
components = self.components
pos = 0
for t in components:
vpos.append(pos)
pos += t._rank
sorted_free = [x[0] for x in self.free]
sorted_free.sort()
nfree = len(sorted_free)
rank = self._ext_rank
dum = [[None]*4 for i in range((rank - nfree)//2)]
free = []
icomp = -1
for i in range(rank):
if i in vpos:
icomp += vpos.count(i)
pos0 = i
ipos = i - pos0
gi = g[i]
if gi < nfree:
ind = sorted_free[gi]
free.append((ind, ipos, icomp))
else:
j = gi - nfree
idum, cov = divmod(j, 2)
if cov:
dum[idum][1] = ipos
dum[idum][3] = icomp
else:
dum[idum][0] = ipos
dum[idum][2] = icomp
dum = [tuple(x) for x in dum]
return TIDS(components, free, dum)
@doctest_depends_on(modules=('numpy',))
[docs]class VTIDS(TIDS):
"""
This class handles a ``VTIDS`` object, which is a ``TIDS`` object with an
attached ``numpy`` ``ndarray``.
To create a `TIDS` object via the standard constructor, the required
arguments are
``components`` `TensorHead` objects representing the components
of the tensor expression.
``free`` Free indices in their internal representation.
``dum`` Dummy indices in their internal representation.
``data`` Data as a ``numpy`` ``ndarray``.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, VTIDS, tensorhead
>>> import numpy
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> m0, m1, m2, m3 = tensor_indices('m0,m1,m2,m3', Lorentz)
>>> T = tensorhead('T', [Lorentz]*4, [[1]*4])
>>> data = numpy.array([2,9,6,-5]).reshape(2, 2)
>>> VTIDS([T], [(m0, 0, 0), (m3, 3, 0)], [(1, 2, 0, 0)], data)
VTIDS([T(Lorentz,Lorentz,Lorentz,Lorentz)], [(m0, 0, 0), (m3, 3, 0)], [(1, 2, 0, 0)], [[ 2 9]
[ 6 -5]])
"""
def __init__(self, components, free, dum, data):
super(VTIDS, self).__init__(components, free, dum)
self.data = data
@staticmethod
def _contract_ndarray(free1, free2, ndarray1, ndarray2):
numpy = import_module('numpy')
def ikey(x):
return x[1:]
free1 = free1[:]
free2 = free2[:]
free1.sort(key=ikey)
free2.sort(key=ikey)
self_free = [_[0] for _ in free1]
axes1 = []
axes2 = []
for jpos, jindex in enumerate(free2):
if -jindex[0] in self_free:
nidx = self_free.index(-jindex[0])
else:
continue
axes1.append(nidx)
axes2.append(jpos)
contracted_ndarray = numpy.tensordot(
ndarray1,
ndarray2,
(axes1, axes2)
)
return contracted_ndarray
@staticmethod
[docs] def mul(f, g):
"""
Multiplies two ``VTIDS`` objects, it first calls its super method
on ``TIDS``, then creates a new ``VTIDS`` object, adding ``ndarray``
data according to the metric contractions of indices.
"""
components, free, dum = TIDS.mul(f, g)
data = VTIDS._contract_ndarray(f.free, g.free, f.data, g.data)
return components, free, dum, data
def __mul__(f, g):
return VTIDS(*VTIDS.mul(f, g))
@staticmethod
def flip_index_by_metric(data, metric, pos):
numpy = import_module('numpy')
data = numpy.tensordot(
metric,
data,
(1, pos))
return numpy.rollaxis(data, 0, pos+1)
[docs] def correct_signature_from_indices(self, data, indices, free, dum):
"""
Utility function to correct the values inside the data ndarray
according to whether indices are covariant or contravariant.
It uses the metric matrix to lower values of covariant indices.
"""
numpy = import_module('numpy')
# change the ndarray values according covariantness/contravariantness of the indices
# use the metric
for i, indx in enumerate(indices):
if not indx.is_up:
data = VTIDS.flip_index_by_metric(data, indx._tensortype.data, i)
if len(dum) > 0:
### perform contractions ###
axes1 = []
axes2 = []
for i, indx1 in enumerate(indices):
try:
nd = indices[:i].index(-indx1)
except ValueError:
continue
axes1.append(nd)
axes2.append(i)
for ax1, ax2 in zip(axes1, axes2):
data = numpy.trace(data, axis1=ax1, axis2=ax2)
self.data = data
@staticmethod
@doctest_depends_on(modules=('numpy',))
[docs] def parse_data(data):
"""
Transform data to a numpy ndarray.
Examples
========
>>> from sympy.tensor.tensor import VTIDS
>>> VTIDS.parse_data([1, 3, -6, 12])
[1 3 -6 12]
>>> VTIDS.parse_data([[1, 2], [4, 7]])
[[1 2]
[4 7]]
"""
numpy = import_module('numpy')
if (numpy is not None) and (not isinstance(data, numpy.ndarray)):
if len(data) == 2 and hasattr(data[0], '__call__'):
def fromfunction_sympify(*x):
return sympify(data[0](*x))
data = numpy.fromfunction(fromfunction_sympify, data[1])
else:
vsympify = numpy.vectorize(sympify)
data = vsympify(numpy.array(data))
return data
def _sort_data_axes(self, ret):
numpy = import_module('numpy')
new_data = self.data.copy()
old_free = [i[0] for i in self.free]
new_free = [i[0] for i in ret.free]
for i in range(len(new_free)):
for j in range(i, len(old_free)):
if old_free[j] == new_free[i]:
old_free[i], old_free[j] = old_free[j], old_free[i]
new_data = numpy.swapaxes(new_data, i, j)
break
return new_data
def sorted_components(self):
ret, sign = TIDS.sorted_components(self)
new_data = self._sort_data_axes(ret)
vtids = VTIDS(ret.components, ret.free, ret.dum, new_data)
return vtids, sign
def perm2tensor(self, g, canon_bp=False):
ret = TIDS.perm2tensor(self, g, canon_bp)
new_data = self._sort_data_axes(ret)
return VTIDS(ret.components, ret.free, ret.dum, new_data)
def __str__(self):
return "VTIDS(%s, %s, %s, %s)" % (self.components, self.free, self.dum, self.data)
def __repr__(self):
return str(self)
[docs]class _TensorManager(object):
"""
Class to manage tensor properties.
Notes
=====
Tensors belong to tensor commutation groups; each group has a label
``comm``; there are predefined labels:
``0`` tensors commuting with any other tensor
``1`` tensors anticommuting among themselves
``2`` tensors not commuting, apart with those with ``comm=0``
Other groups can be defined using ``set_comm``; tensors in those
groups commute with those with ``comm=0``; by default they
do not commute with any other group.
"""
def __init__(self):
self._comm_init()
def _comm_init(self):
self._comm = [{} for i in range(3)]
for i in range(3):
self._comm[0][i] = 0
self._comm[i][0] = 0
self._comm[1][1] = 1
self._comm[2][1] = None
self._comm[1][2] = None
self._comm_symbols2i = {0:0, 1:1, 2:2}
self._comm_i2symbol = {0:0, 1:1, 2:2}
@property
def comm(self):
return self._comm
[docs] def comm_symbols2i(self, i):
"""
get the commutation group number corresponding to ``i``
``i`` can be a symbol or a number or a string
If ``i`` is not already defined its commutation group number
is set.
"""
if i not in self._comm_symbols2i:
n = len(self._comm)
self._comm.append({})
self._comm[n][0] = 0
self._comm[0][n] = 0
self._comm_symbols2i[i] = n
self._comm_i2symbol[n] = i
return n
return self._comm_symbols2i[i]
[docs] def comm_i2symbol(self, i):
"""
Returns the symbol corresponding to the commutation group number.
"""
return self._comm_i2symbol[i]
[docs] def set_comm(self, i, j, c):
"""
set the commutation parameter ``c`` for commutation groups ``i, j``
Parameters
==========
i, j : symbols representing commutation groups
c : group commutation number
Notes
=====
``i, j`` can be symbols, strings or numbers,
apart from ``0, 1`` and ``2`` which are reserved respectively
for commuting, anticommuting tensors and tensors not commuting
with any other group apart with the commuting tensors.
For the remaining cases, use this method to set the commutation rules;
by default ``c=None``.
The group commutation number ``c`` is assigned in correspondence
to the group commutation symbols; it can be
0 commuting
1 anticommuting
None no commutation property
Examples
========
``G`` and ``GH`` do not commute with themselves and commute with
each other; A is commuting.
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead, TensorManager
>>> Lorentz = TensorIndexType('Lorentz')
>>> i0,i1,i2,i3,i4 = tensor_indices('i0:5', Lorentz)
>>> A = tensorhead('A', [Lorentz], [[1]])
>>> G = tensorhead('G', [Lorentz], [[1]], 'Gcomm')
>>> GH = tensorhead('GH', [Lorentz], [[1]], 'GHcomm')
>>> TensorManager.set_comm('Gcomm', 'GHcomm', 0)
>>> (GH(i1)*G(i0)).canon_bp()
G(i0)*GH(i1)
>>> (G(i1)*G(i0)).canon_bp()
G(i1)*G(i0)
>>> (G(i1)*A(i0)).canon_bp()
A(i0)*G(i1)
"""
if c not in (0, 1, None):
raise ValueError('`c` can assume only the values 0, 1 or None')
if i not in self._comm_symbols2i:
n = len(self._comm)
self._comm.append({})
self._comm[n][0] = 0
self._comm[0][n] = 0
self._comm_symbols2i[i] = n
self._comm_i2symbol[n] = i
if j not in self._comm_symbols2i:
n = len(self._comm)
self._comm.append({})
self._comm[0][n] = 0
self._comm[n][0] = 0
self._comm_symbols2i[j] = n
self._comm_i2symbol[n] = j
ni = self._comm_symbols2i[i]
nj = self._comm_symbols2i[j]
self._comm[ni][nj] = c
self._comm[nj][ni] = c
[docs] def set_comms(self, *args):
"""
set the commutation group numbers ``c`` for symbols ``i, j``
Parameters
==========
args : sequence of ``(i, j, c)``
"""
for i, j, c in args:
self.set_comm(i, j, c)
[docs] def get_comm(self, i, j):
"""
Return the commutation parameter for commutation group numbers ``i, j``
see ``_TensorManager.set_comm``
"""
return self._comm[i].get(j, 0 if i == 0 or j == 0 else None)
[docs] def clear(self):
"""
Clear the TensorManager.
"""
self._comm_init()
TensorManager = _TensorManager()
@doctest_depends_on(modules=('numpy',))
[docs]class TensorIndexType(Basic):
"""
A TensorIndexType is characterized by its name and its metric.
Parameters
==========
name : name of the tensor type
metric : metric symmetry or metric object or ``None``
dim : dimension, it can be a symbol or an integer or ``None``
eps_dim : dimension of the epsilon tensor
dummy_fmt : name of the head of dummy indices
Attributes
==========
``name``
``metric_name`` : it is 'metric' or metric.name
``metric_antisym``
``metric`` : the metric tensor
``delta`` : ``Kronecker delta``
``epsilon`` : the ``Levi-Civita epsilon`` tensor
``dim``
``dim_eps``
``dummy_fmt``
``data`` : a property to add ``ndarray`` values, to work in a specified basis.
Notes
=====
The ``metric`` parameter can be:
``metric = False`` symmetric metric (in Riemannian geometry)
``metric = True`` antisymmetric metric (for spinor calculus)
``metric = None`` there is no metric
``metric`` can be an object having ``name`` and ``antisym`` attributes.
If there is a metric the metric is used to raise and lower indices.
In the case of antisymmetric metric, the following raising and
lowering conventions will be adopted:
``psi(a) = g(a, b)*psi(-b); chi(-a) = chi(b)*g(-b, -a)``
``g(-a, b) = delta(-a, b); g(b, -a) = -delta(a, -b)``
where ``delta(-a, b) = delta(b, -a)`` is the ``Kronecker delta``
(see ``TensorIndex`` for the conventions on indices).
If there is no metric it is not possible to raise or lower indices;
e.g. the index of the defining representation of ``SU(N)``
is 'covariant' and the conjugate representation is
'contravariant'; for ``N > 2`` they are linearly independent.
``eps_dim`` is by default equal to ``dim``, if the latter is an integer;
else it can be assigned (for use in naive dimensional regularization);
if ``eps_dim`` is not an integer ``epsilon`` is ``None``.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> Lorentz.metric
metric(Lorentz,Lorentz)
Examples with metric data added, this means it is working on a fixed basis:
>>> Lorentz.data = [1, -1, -1, -1]
>>> Lorentz
TensorIndexType(Lorentz, 0)
>>> Lorentz.data
[[1 0 0 0]
[0 -1 0 0]
[0 0 -1 0]
[0 0 0 -1]]
"""
def __new__(cls, name, metric=False, dim=None, eps_dim=None,
dummy_fmt=None):
if isinstance(name, string_types):
name = Symbol(name)
obj = Basic.__new__(cls, name, S.One if metric else S.Zero)
obj._name = str(name)
if not dummy_fmt:
obj._dummy_fmt = '%s_%%d' % obj.name
else:
obj._dummy_fmt = '%s_%%d' % dummy_fmt
if metric is None:
obj.metric_antisym = None
obj.metric = None
else:
if metric in (True, False, 0, 1):
metric_name = 'metric'
obj.metric_antisym = metric
else:
metric_name = metric.name
obj.metric_antisym = metric.antisym
sym2 = TensorSymmetry(get_symmetric_group_sgs(2, obj.metric_antisym))
S2 = TensorType([obj]*2, sym2)
obj.metric = S2(metric_name)
obj.metric._matrix_behavior = True
obj._dim = dim
obj._delta = obj.get_kronecker_delta()
obj._eps_dim = eps_dim if eps_dim else dim
obj._epsilon = obj.get_epsilon()
obj._autogenerated = []
obj._data = None
return obj
@property
def auto_right(self):
if not hasattr(self, '_auto_right'):
self._auto_right = TensorIndex("auto_right", self)
return self._auto_right
@property
def auto_left(self):
if not hasattr(self, '_auto_left'):
self._auto_left = TensorIndex("auto_left", self)
return self._auto_left
@property
def auto_index(self):
if not hasattr(self, '_auto_index'):
self._auto_index = TensorIndex("auto_index", self)
return self._auto_index
@property
def data(self):
return self._data
@data.setter
def data(self, data):
numpy = import_module('numpy')
data = VTIDS.parse_data(data)
if data.ndim > 2:
raise ValueError("data have to be of rank 1 (diagonal metric) or 2.")
if data.ndim == 1:
if self.dim is not None:
nda_dim = data.shape[0]
if nda_dim != self.dim:
raise ValueError("Dimension mismatch")
dim = data.shape[0]
newndarray = numpy.zeros((dim, dim), dtype=object)
for i, val in enumerate(data):
newndarray[i, i] = val
data = newndarray
dim1, dim2 = data.shape
if dim1 != dim2:
raise ValueError("Non-square matrix tensor.")
if self.dim is not None:
if self.dim != dim1:
raise ValueError("Dimension mismatch")
self._data = data
self.metric.data = data
@data.deleter
def data(self):
del self._data
self._data = None
del self.metric.data
@property
def name(self):
return self._name
@property
def dim(self):
return self._dim
@property
def delta(self):
return self._delta
@property
def eps_dim(self):
return self._eps_dim
@property
def epsilon(self):
return self._epsilon
@property
def dummy_fmt(self):
return self._dummy_fmt
def get_kronecker_delta(self):
sym2 = TensorSymmetry(get_symmetric_group_sgs(2))
S2 = TensorType([self]*2, sym2)
delta = S2('KD')
delta._matrix_behavior = True
return delta
def get_epsilon(self):
if not isinstance(self._eps_dim, int):
return None
sym = TensorSymmetry(get_symmetric_group_sgs(self._eps_dim, 1))
Sdim = TensorType([self]*self._eps_dim, sym)
epsilon = Sdim('Eps')
return epsilon
def __lt__(self, other):
return self.name < other.name
def __str__(self):
return self.name
__repr__ = __str__
@doctest_depends_on(modules=('numpy',))
[docs]class TensorIndex(Basic):
"""
Represents an abstract tensor index.
Parameters
==========
name : name of the index, or ``True`` if you want it to be automatically assigned
tensortype : ``TensorIndexType`` of the index
is_up : flag for contravariant index
Attributes
==========
``name``
``tensortype``
``is_up``
Notes
=====
Tensor indices are contracted with the Einstein summation convention.
An index can be in contravariant or in covariant form; in the latter
case it is represented prepending a ``-`` to the index name.
Dummy indices have a name with head given by ``tensortype._dummy_fmt``
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, TensorIndex, TensorSymmetry, TensorType, get_symmetric_group_sgs
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> i = TensorIndex('i', Lorentz); i
i
>>> sym1 = TensorSymmetry(*get_symmetric_group_sgs(1))
>>> S1 = TensorType([Lorentz], sym1)
>>> A, B = S1('A,B')
>>> A(i)*B(-i)
A(L_0)*B(-L_0)
If you want the index name to be automatically assigned, just put ``True``
in the ``name`` field, it will be generated using the reserved character
``_`` in front of its name, in order to avoid conflicts with possible
existing indices:
>>> i0 = TensorIndex(True, Lorentz)
>>> i0
_i0
>>> i1 = TensorIndex(True, Lorentz)
>>> i1
_i1
>>> A(i0)*B(-i1)
A(_i0)*B(-_i1)
>>> A(i0)*B(-i0)
A(L_0)*B(-L_0)
"""
def __new__(cls, name, tensortype, is_up=True):
if isinstance(name, string_types):
name_symbol = Symbol(name)
elif isinstance(name, Symbol):
name_symbol = name
elif name is True:
name = "_i{0}".format(len(tensortype._autogenerated))
name_symbol = Symbol(name)
tensortype._autogenerated.append(name_symbol)
else:
raise ValueError("invalid name")
obj = Basic.__new__(cls, name_symbol, tensortype, S.One if is_up else S.Zero)
obj._name = str(name)
obj._tensortype = tensortype
obj._is_up = is_up
return obj
@property
def name(self):
return self._name
@property
def tensortype(self):
return self._tensortype
@property
def is_up(self):
return self._is_up
def _print(self):
s = self._name
if not self._is_up:
s = '-%s' % s
return s
def __lt__(self, other):
return (self._tensortype, self._name) < (other._tensortype, other._name)
def __neg__(self):
t1 = TensorIndex(self._name, self._tensortype,
(not self._is_up))
return t1
[docs]def tensor_indices(s, typ):
"""
Returns list of tensor indices given their names and their types
Parameters
==========
s : string of comma separated names of indices
typ : list of ``TensorIndexType`` of the indices
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> a, b, c, d = tensor_indices('a,b,c,d', Lorentz)
"""
if isinstance(s, str):
a = [x.name for x in symbols(s, seq=True)]
else:
raise ValueError('expecting a string')
tilist = [TensorIndex(i, typ) for i in a]
if len(tilist) == 1:
return tilist[0]
return tilist
@doctest_depends_on(modules=('numpy',))
[docs]class TensorSymmetry(Basic):
"""
Monoterm symmetry of a tensor
Parameters
==========
bsgs : tuple ``(base, sgs)`` BSGS of the symmetry of the tensor
Attributes
==========
``base`` : base of the BSGS
``generators`` : generators of the BSGS
``rank`` : rank of the tensor
Notes
=====
A tensor can have an arbitrary monoterm symmetry provided by its BSGS.
Multiterm symmetries, like the cyclic symmetry of the Riemann tensor,
are not covered.
See Also
========
sympy.combinatorics.tensor_can.get_symmetric_group_sgs
Examples
========
Define a symmetric tensor
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorSymmetry, TensorType, get_symmetric_group_sgs
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> sym2 = TensorSymmetry(get_symmetric_group_sgs(2))
>>> S2 = TensorType([Lorentz]*2, sym2)
>>> V = S2('V')
"""
def __new__(cls, *args, **kw_args):
if len(args) == 1:
base, generators = args[0]
elif len(args) == 2:
base, generators = args
else:
raise TypeError("bsgs required, either two separate parameters or one tuple")
if not isinstance(base, Tuple):
base = Tuple(*base)
if not isinstance(generators, Tuple):
generators = Tuple(*generators)
obj = Basic.__new__(cls, base, generators, **kw_args)
return obj
@property
def base(self):
return self.args[0]
@property
def generators(self):
return self.args[1]
@property
def rank(self):
return self.args[1][0].size - 2
def tensorsymmetry(*args):
"""
Return a ``TensorSymmetry`` object.
One can represent a tensor with any monoterm slot symmetry group
using a BSGS.
``args`` can be a BSGS
``args[0]`` base
``args[1]`` sgs
Usually tensors are in (direct products of) representations
of the symmetric group;
``args`` can be a list of lists representing the shapes of Young tableaux
Notes
=====
For instance:
``[[1]]`` vector
``[[1]*n]`` symmetric tensor of rank ``n``
``[[n]]`` antisymmetric tensor of rank ``n``
``[[2, 2]]`` monoterm slot symmetry of the Riemann tensor
``[[1],[1]]`` vector*vector
``[[2],[1],[1]`` (antisymmetric tensor)*vector*vector
Notice that with the shape ``[2, 2]`` we associate only the monoterm
symmetries of the Riemann tensor; this is an abuse of notation,
since the shape ``[2, 2]`` corresponds usually to the irreducible
representation characterized by the monoterm symmetries and by the
cyclic symmetry.
Examples
========
Symmetric tensor using a Young tableau
>>> from sympy.tensor.tensor import TensorIndexType, TensorType, tensorsymmetry
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> sym2 = tensorsymmetry([1, 1])
>>> S2 = TensorType([Lorentz]*2, sym2)
>>> V = S2('V')
Symmetric tensor using a BSGS
>>> from sympy.tensor.tensor import TensorSymmetry, get_symmetric_group_sgs
>>> sym2 = tensorsymmetry(*get_symmetric_group_sgs(2))
>>> S2 = TensorType([Lorentz]*2, sym2)
>>> V = S2('V')
"""
from sympy.combinatorics import Permutation
def tableau2bsgs(a):
if len(a) == 1:
# antisymmetric vector
n = a[0]
bsgs = get_symmetric_group_sgs(n, 1)
else:
if all(x == 1 for x in a):
# symmetric vector
n = len(a)
bsgs = get_symmetric_group_sgs(n)
elif a == [2, 2]:
bsgs = riemann_bsgs
else:
raise NotImplementedError
return bsgs
if not args:
return TensorSymmetry(Tuple(), Tuple(Permutation(1)))
if len(args) == 2 and isinstance(args[1][0], Permutation):
return TensorSymmetry(args)
base, sgs = tableau2bsgs(args[0])
for a in args[1:]:
basex, sgsx = tableau2bsgs(a)
base, sgs = bsgs_direct_product(base, sgs, basex, sgsx)
return TensorSymmetry(Tuple(base, sgs))
@doctest_depends_on(modules=('numpy',))
[docs]class TensorType(Basic):
"""
Class of tensor types.
Parameters
==========
index_types : list of ``TensorIndexType`` of the tensor indices
symmetry : ``TensorSymmetry`` of the tensor
Attributes
==========
``index_types``
``symmetry``
``types`` : list of ``TensorIndexType`` without repetitions
Examples
========
Define a symmetric tensor
>>> from sympy.tensor.tensor import TensorIndexType, tensorsymmetry, TensorType
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> sym2 = tensorsymmetry([1, 1])
>>> S2 = TensorType([Lorentz]*2, sym2)
>>> V = S2('V')
"""
is_commutative = False
def __new__(cls, index_types, symmetry, **kw_args):
assert symmetry.rank == len(index_types)
obj = Basic.__new__(cls, Tuple(*index_types), symmetry, **kw_args)
return obj
@property
def index_types(self):
return self.args[0]
@property
def symmetry(self):
return self.args[1]
@property
def types(self):
return sorted(set(self.index_types), key=lambda x: x.name)
def __str__(self):
return 'TensorType(%s)' % ([str(x) for x in self.index_types])
def __call__(self, s, comm=0, matrix_behavior=0):
"""
Return a TensorHead object or a list of TensorHead objects.
``s`` name or string of names
``comm``: commutation group number
see ``_TensorManager.set_comm``
Examples
========
Define symmetric tensors ``V``, ``W`` and ``G``, respectively
commuting, anticommuting and with no commutation symmetry
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorsymmetry, TensorType, canon_bp
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> a, b = tensor_indices('a,b', Lorentz)
>>> sym2 = tensorsymmetry([1]*2)
>>> S2 = TensorType([Lorentz]*2, sym2)
>>> V = S2('V')
>>> W = S2('W', 1)
>>> G = S2('G', 2)
>>> canon_bp(V(a, b)*V(-b, -a))
V(L_0, L_1)*V(-L_0, -L_1)
>>> canon_bp(W(a, b)*W(-b, -a))
0
"""
if isinstance(s, str):
names = [x.name for x in symbols(s, seq=True)]
else:
raise ValueError('expecting a string')
if len(names) == 1:
return TensorHead(names[0], self, comm, matrix_behavior=matrix_behavior)
else:
return [TensorHead(name, self, comm, matrix_behavior=matrix_behavior) for name in names]
def tensorhead(name, typ, sym, comm=0, matrix_behavior=0):
"""
Function generating tensorhead(s).
Parameters
==========
name : name or sequence of names (as in ``symbol``)
typ : index types
sym : same as ``*args`` in ``tensorsymmetry``
comm : commutation group number
see ``_TensorManager.set_comm``
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> a, b = tensor_indices('a,b', Lorentz)
>>> A = tensorhead('A', [Lorentz]*2, [[1]*2])
>>> A(a, -b)
A(a, -b)
"""
sym = tensorsymmetry(*sym)
S = TensorType(typ, sym)
th = S(name, comm, matrix_behavior=matrix_behavior)
return th
@doctest_depends_on(modules=('numpy',))
[docs]class TensorHead(Basic):
"""
Tensor head of the tensor
Parameters
==========
name : name of the tensor
typ : list of TensorIndexType
comm : commutation group number
Attributes
==========
``name``
``index_types``
``rank``
``types`` : equal to ``typ.types``
``symmetry`` : equal to ``typ.symmetry``
``comm`` : commutation group
Notes
=====
A ``TensorHead`` belongs to a commutation group, defined by a
symbol on number ``comm`` (see ``_TensorManager.set_comm``);
tensors in a commutation group have the same commutation properties;
by default ``comm`` is ``0``, the group of the commuting tensors.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensorsymmetry, TensorType
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> sym2 = tensorsymmetry([1]*2)
>>> S2 = TensorType([Lorentz]*2, sym2)
>>> A = S2('A')
Examples with ndarray values:
>>> from sympy.tensor.tensor import tensor_indices, tensorhead
>>> Lorentz.data = [1, -1, -1, -1]
>>> i0, i1 = tensor_indices('i0:2', Lorentz)
>>> A.data = [[j+2*i for j in range(4)] for i in range(4)]
in order to retrieve data, it is also necessary to specify abstract indices
enclosed by round brackets, then numerical indices inside square brackets.
>>> A(i0, i1)[0, 0]
0
>>> A(i0, i1)[2, 3] == 3+2*2
True
Notice that square brackets create a valued tensor expression instance:
>>> A(i0, i1)
A(i0, i1)
To view the data, just type:
>>> A.data
[[0 1 2 3]
[2 3 4 5]
[4 5 6 7]
[6 7 8 9]]
Turning to a tensor expression, covariant indices get the corresponding
data corrected by the metric:
>>> A(i0, -i1).data
[[0 -1 -2 -3]
[2 -3 -4 -5]
[4 -5 -6 -7]
[6 -7 -8 -9]]
>>> A(-i0, -i1).data
[[0 -1 -2 -3]
[-2 3 4 5]
[-4 5 6 7]
[-6 7 8 9]]
while if all indices are contravariant, the ``ndarray`` remains the same
>>> A(i0, i1).data
[[0 1 2 3]
[2 3 4 5]
[4 5 6 7]
[6 7 8 9]]
When all indices are contracted and data are added to the tensor,
it will return a scalar resulting from all contractions:
>>> A(i0, -i0)
-18
"""
is_commutative = False
def __new__(cls, name, typ, comm=0, matrix_behavior=0, **kw_args):
if isinstance(name, string_types):
name_symbol = Symbol(name)
elif isinstance(name, Symbol):
name_symbol = name
else:
raise ValueError("invalid name")
comm2i = TensorManager.comm_symbols2i(comm)
obj = Basic.__new__(cls, name_symbol, typ, **kw_args)
obj._matrix_behavior = matrix_behavior
obj._name = obj.args[0].name
obj._rank = len(obj.index_types)
obj._types = typ.types
obj._symmetry = typ.symmetry
obj._comm = comm2i
obj._data = None
return obj
@property
def name(self):
return self._name
@property
def rank(self):
return self._rank
@property
def types(self):
return self._types[:]
@property
def symmetry(self):
return self._symmetry
@property
def typ(self):
return self.args[1]
@property
def comm(self):
return self._comm
@property
def index_types(self):
return self.args[1].index_types[:]
def __lt__(self, other):
return (self.name, self.index_types) < (other.name, other.index_types)
[docs] def commutes_with(self, other):
"""
Returns ``0`` if ``self`` and ``other`` commute, ``1`` if they anticommute.
Returns ``None`` if ``self`` and ``other`` neither commute nor anticommute.
"""
r = TensorManager.get_comm(self._comm, other._comm)
return r
def _print(self):
return '%s(%s)' %(self.name, ','.join([str(x) for x in self.index_types]))
def __call__(self, *indices):
"""
Returns a tensor with indices.
There is a special behavior in case of indices denoted by ``True``,
they are considered auto-matrix indices, their slots are automatically
filled, and confer to the tensor the behavior of a matrix or vector
upon multiplication with another tensor containing auto-matrix indices
of the same ``TensorIndexType``. This means indices get summed over the
same way as in matrix multiplication. For matrix behavior, define two
auto-matrix indices, for vector behavior define just one.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> a, b = tensor_indices('a,b', Lorentz)
>>> A = tensorhead('A', [Lorentz]*2, [[1]*2])
>>> t = A(a, -b)
>>> t
A(a, -b)
To use the auto-matrix index behavior, just put a ``True`` on the
desired index position.
>>> r = A(True, True)
>>> r
A(auto_left, -auto_right)
Here ``auto_left`` and ``auto_right`` are automatically generated
tensor indices, they are only two for every ``TensorIndexType`` and
can be assigned to just one or two indices of a given type.
Auto-matrix indices can be assigned many times in a tensor, if indices
are of different ``TensorIndexType``
>>> Spinor = TensorIndexType('Spinor', dummy_fmt='S')
>>> B = tensorhead('B', [Lorentz, Lorentz, Spinor, Spinor], [[1]*4])
>>> s = B(True, True, True, True)
>>> s
B(auto_left, -auto_right, auto_left, -auto_right)
Here, ``auto_left`` and ``auto_right`` are repeated twice, but they are
not the same indices, as they refer to different ``TensorIndexType``s.
Auto-matrix indices are automatically contracted upon multiplication,
>>> r*s
A(auto_left, -L_0)*B(L_0, -auto_right, auto_left, -auto_right)
The multiplication algorithm has found an ``auto_right`` index in ``A``
and an ``auto_left`` index in ``B`` referring to the same
``TensorIndexType`` (``Lorentz``), so they have been contracted.
Auto-matrix indices can be accessed from the ``TensorIndexType``:
>>> Lorentz.auto_right
auto_right
>>> Lorentz.auto_left
auto_left
There is a special case, in which the ``True`` parameter is not needed
to declare an auto-matrix index, i.e. when the matrix behavior has been
declared upon ``TensorHead`` construction, in that case the last one or
two tensor indices may be omitted, so that they automatically become
auto-matrix indices:
>>> C = tensorhead('C', [Lorentz, Lorentz], [[1]*2], matrix_behavior=True)
>>> C()
C(auto_left, -auto_right)
"""
matrix_behavior_kinds = dict()
if len(indices) != len(self.index_types):
if not self._matrix_behavior:
raise ValueError('wrong number of indices')
# _matrix_behavior is True, so take the last one or two missing
# indices as auto-matrix indices:
ldiff = len(self.index_types) - len(indices)
if ldiff > 2:
raise ValueError('wrong number of indices')
if ldiff == 2:
mat_ind = [len(indices), len(indices) + 1]
elif ldiff == 1:
mat_ind = [len(indices)]
not_equal = True
else:
not_equal = False
mat_ind = [i for i, e in enumerate(indices) if e is True]
if mat_ind:
not_equal = True
indices = tuple([_ for _ in indices if _ is not True])
for i, el in enumerate(indices):
if not isinstance(el, TensorIndex):
not_equal = True
break
if el._tensortype != self.index_types[i]:
not_equal = True
break
if not_equal:
for el in mat_ind:
eltyp = self.index_types[el]
if eltyp in matrix_behavior_kinds:
elind = -self.index_types[el].auto_right
matrix_behavior_kinds[eltyp].append(elind)
else:
elind = self.index_types[el].auto_left
matrix_behavior_kinds[eltyp] = [elind]
indices = indices[:el] + (elind,) + indices[el:]
components = [self]
tids = TIDS.from_components_and_indices(components, indices)
if self.data is not None:
tids = VTIDS(tids.components, tids.free, tids.dum, self.data)
tids.correct_signature_from_indices(self.data, indices, tids.free, tids.dum)
numpy = import_module('numpy')
if not isinstance(tids.data, numpy.ndarray):
return tids.data
tmul = TensMul.from_TIDS(S.One, tids)
tmul._matrix_behavior_kinds = matrix_behavior_kinds
return tmul
def __pow__(self, other):
if self.data is None:
raise ValueError("No power on abstract tensors.")
numpy = import_module('numpy')
metrics = [_.data for _ in self.args[1].args[0]]
marray = self.data
for metric in metrics:
marray = numpy.tensordot(marray, numpy.tensordot(metric, marray, (1, 0)), (0, 0))
pow2 = marray[()]
return pow2 ** (Rational(1, 2) * other)
@property
def data(self):
return self._data
@data.setter
def data(self, data):
data = VTIDS.parse_data(data)
for dim, indextype in zip(data.shape, self.index_types):
if indextype.data is None:
raise ValueError("index type {} has no data associated (needed to raise/lower index)".format(indextype))
if indextype.dim is None:
continue
if dim != indextype.dim:
raise ValueError("wrong dimension of ndarray")
self._data = data
@data.deleter
def data(self):
del self._data
self._data = None
def applyfunc(self, func):
th = TensorHead(*self.args)
th.data = func(self.data)
return th
def __iter__(self):
return self.data.flatten().__iter__()
[docs] def strip(self):
"""
Return an identical ``TensorHead``, just with ``ndarray`` data removed.
"""
return TensorHead(*self.args)
@doctest_depends_on(modules=('numpy',))
[docs]class TensExpr(Basic):
"""
Abstract base class for tensor expressions
Notes
=====
A tensor expression is an expression formed by tensors;
currently the sums of tensors are distributed.
A ``TensExpr`` can be a ``TensAdd`` or a ``TensMul``.
``TensAdd`` objects are put in canonical form using the Butler-Portugal
algorithm for canonicalization under monoterm symmetries.
``TensMul`` objects are formed by products of component tensors,
and include a coefficient, which is a SymPy expression.
In the internal representation contracted indices are represented
by ``(ipos1, ipos2, icomp1, icomp2)``, where ``icomp1`` is the position
of the component tensor with contravariant index, ``ipos1`` is the
slot which the index occupies in that component tensor.
Contracted indices are therefore nameless in the internal representation.
"""
_op_priority = 11.0
is_commutative = False
def __neg__(self):
return self*S.NegativeOne
def __abs__(self):
raise NotImplementedError
def __add__(self, other):
raise NotImplementedError
def __radd__(self, other):
raise NotImplementedError
def __sub__(self, other):
raise NotImplementedError
def __rsub__(self, other):
raise NotImplementedError
def __mul__(self, other):
raise NotImplementedError
def __rmul__(self, other):
raise NotImplementedError
def __pow__(self, other):
if self.data is None:
raise ValueError("No power without ndarray data.")
numpy = import_module('numpy')
free = self.free
marray = self.data
for metric in free:
marray = numpy.tensordot(
marray,
numpy.tensordot(
metric[0]._tensortype.data,
marray,
(1, 0)
),
(0, 0)
)
pow2 = marray[()]
return pow2 ** (Rational(1, 2) * other)
def __rpow__(self, other):
raise NotImplementedError
def __div__(self, other):
raise NotImplementedError
def __rdiv__(self, other):
raise NotImplementedError()
__truediv__ = __div__
__rtruediv__ = __rdiv__
@doctest_depends_on(modules=('numpy',))
[docs] def get_matrix(self):
"""
Returns ndarray data as a matrix, if data are available and ndarray
dimension does not exceed 2.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensorsymmetry, TensorType
>>> from sympy import ones
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> sym2 = tensorsymmetry([1]*2)
>>> S2 = TensorType([Lorentz]*2, sym2)
>>> A = S2('A')
>>> from sympy.tensor.tensor import tensor_indices, tensorhead
>>> Lorentz.data = [1, -1, -1, -1]
>>> i0, i1 = tensor_indices('i0:2', Lorentz)
>>> A.data = [[j+2*i for j in range(4)] for i in range(4)]
>>> A(i0, i1).get_matrix()
Matrix([
[0, 1, 2, 3],
[2, 3, 4, 5],
[4, 5, 6, 7],
[6, 7, 8, 9]])
It is possible to perform usual operation on matrices, such as the
matrix multiplication:
>>> A(i0, i1).get_matrix()*ones(4, 1)
Matrix([
[ 6],
[14],
[22],
[30]])
"""
if 0 < self.rank <= 2:
rows = self.data.shape[0]
columns = self.data.shape[1] if self.rank == 2 else 1
if self.rank == 2:
mat_list = [] * rows
for i in range(rows):
mat_list.append([])
for j in range(columns):
mat_list[i].append(self[i, j])
else:
mat_list = [None] * rows
for i in range(rows):
mat_list[i] = self[i]
return Matrix(mat_list)
else:
raise NotImplementedError(
"missing multidimensional reduction to matrix.")
def _eval_simplify(self, ratio, measure):
# this is a way to simplify a tensor expression.
# This part walks for all `TensorHead`s appearing in the tensor expr
# and looks for `simplify_this_type`, to specifically act on a subexpr
# containing one type of `TensorHead` instance only:
expr = self
for i in list(set(self.components)):
if hasattr(i, 'simplify_this_type'):
expr = i.simplify_this_type(expr)
# TODO: missing feature, perform metric contraction.
return expr
[docs] def strip(self):
"""
Return an identical tensor expression, just with ``ndarray`` data removed.
"""
return self.func(*self.args)
@doctest_depends_on(modules=('numpy',))
[docs]class TensAdd(TensExpr):
"""
Sum of tensors
Parameters
==========
free_args : list of the free indices
Attributes
==========
``args`` : tuple of addends
``rank`` : rank of the tensor
``free_args`` : list of the free indices in sorted order
Notes
=====
Sum of more than one tensor are put automatically in canonical form.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensorhead, tensor_indices
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> a, b = tensor_indices('a,b', Lorentz)
>>> p, q = tensorhead('p,q', [Lorentz], [[1]])
>>> t = p(a) + q(a); t
p(a) + q(a)
>>> t(b)
p(b) + q(b)
Examples with data added to the tensor expression:
>>> from sympy import eye
>>> Lorentz.data = [1, -1, -1, -1]
>>> a, b = tensor_indices('a, b', Lorentz)
>>> p.data = [2, 3, -2, 7]
>>> q.data = [2, 3, -2, 7]
>>> t = p(a) + q(a); t
p(a) + q(a)
>>> t(b)
p(b) + q(b)
The following are: 2**2 - 3**2 - 2**2 - 7**2 ==> -58
>>> p(a)*p(-a)
-58
>>> p(a)**2
-58
"""
def __new__(cls, *args, **kw_args):
args = [sympify(x) for x in args if x]
old_args = args[:]
args, data = TensAdd._tensAdd_flatten(args)
if not args:
return S.Zero
# replace auto-matrix indices so that they are the same in all addends
args = TensAdd._tensAdd_check_automatrix(args)
# now check that all addends have the same indices:
TensAdd._tensAdd_check(args)
args = Tuple(*args)
# if TensAdd has only 1 TensMul element in its `args`:
if len(args) == 1 and isinstance(args[0], TensMul):
obj = Basic.__new__(cls, *args, **kw_args)
obj._data = data
return obj
# canonicalize all TensMul
args = [x.canon_bp() for x in args if x]
args = [x for x in args if x]
# if there are no more args (i.e. have cancelled out),
# just return zero:
if not args:
return S.Zero
# collect canonicalized terms
args.sort(key=lambda x: (x.components, x.free, x.dum))
a = TensAdd._tensAdd_collect_terms(args)
if not a:
return S.Zero
# it there is only a component tensor return it
if len(a) == 1:
if data is not None:
a[0].data = old_args[0].data
return a[0]
args = Tuple(*args)
obj = Basic.__new__(cls, *args, **kw_args)
obj._args = tuple(a)
obj._data = data
return obj
@staticmethod
def _tensAdd_flatten(args):
# flatten TensAdd, coerce terms which are not tensors to tensors
data_list = []
if not all(isinstance(x, TensExpr) for x in args):
args1 = []
for x in args:
if isinstance(x, TensExpr):
if isinstance(x, TensAdd):
args1.extend(list(x.args))
else:
args1.append(x)
args1 = [x for x in args1 if isinstance(x, TensExpr) and x._coeff]
args2 = [x for x in args if not isinstance(x, TensExpr)]
t1 = TensMul.from_data(Add(*args2), [], [], [])
args = [t1] + args1
a = []
for x in args:
data_list.append(x.data)
if isinstance(x, TensAdd):
a.extend(list(x.args))
else:
a.append(x)
args = [x for x in a if x._coeff]
data_p = [_ is None for _ in data_list]
data = None
if data_p:
if any(data_p) != all(data_p):
raise ValueError("attempting to mix tensors with data and tensors without data")
if not any(data_p):
data = S.Zero
for i in args:
if isinstance(i, TensAdd):
data += i.data
else:
data += i.coeff * i.data
if not args[0].rank: # autodrop point
return data
return args, data
@staticmethod
def _tensAdd_check_automatrix(args):
# check that all automatrix indices are the same.
# if there are no addends, just return.
if not args:
return args
# @type auto_left_types: set
auto_left_types = set([])
auto_right_types = set([])
args_auto_left_types = []
args_auto_right_types = []
for i, arg in enumerate(args):
arg_auto_left_types = set([])
arg_auto_right_types = set([])
for index in arg.get_indices():
# @type index: TensorIndex
if index in (index._tensortype.auto_left, -index._tensortype.auto_left):
auto_left_types.add(index._tensortype)
arg_auto_left_types.add(index._tensortype)
if index in (index._tensortype.auto_right, -index._tensortype.auto_right):
auto_right_types.add(index._tensortype)
arg_auto_right_types.add(index._tensortype)
args_auto_left_types.append(arg_auto_left_types)
args_auto_right_types.append(arg_auto_right_types)
for arg, aas_left, aas_right in zip(args, args_auto_left_types, args_auto_right_types):
missing_left = auto_left_types - aas_left
missing_right = auto_right_types - aas_right
missing_intersection = missing_left & missing_right
for j in missing_intersection:
args[i] *= j.delta(j.auto_left, -j.auto_right)
if missing_left != missing_right:
raise ValueError("cannot determine how to add auto-matrix indices on some args")
return args
@staticmethod
def _tensAdd_check(args):
# check that all addends have the same free indices
indices0 = set([x[0] for x in args[0].free])
list_indices = [set([y[0] for y in x.free]) for x in args[1:]]
if not all(x == indices0 for x in list_indices):
raise ValueError('all tensors must have the same indices')
@staticmethod
def _tensAdd_collect_terms(args):
# collect TensMul terms differing at most by their coefficient
a = []
prev = args[0]
prev_coeff = prev._coeff
changed = False
for x in args[1:]:
# if x and prev have the same tensor, update the coeff of prev
if x.components == prev.components \
and x.free == prev.free and x.dum == prev.dum:
prev_coeff = prev_coeff + x._coeff
changed = True
op = 0
else:
# x and prev are different; if not changed, prev has not
# been updated; store it
if not changed:
a.append(prev)
else:
# get a tensor from prev with coeff=prev_coeff and store it
if prev_coeff:
t = TensMul.from_data(prev_coeff, prev.components,
prev.free, prev.dum)
a.append(t)
# move x to prev
op = 1
pprev, prev = prev, x
pprev_coeff, prev_coeff = prev_coeff, x._coeff
changed = False
# if the case op=0 prev was not stored; store it now
# in the case op=1 x was not stored; store it now (as prev)
if op == 0 and prev_coeff:
prev = TensMul.from_data(prev_coeff, prev.components, prev.free, prev.dum)
a.append(prev)
elif op == 1:
a.append(prev)
return a
@property
def rank(self):
return self.args[0].rank
@property
def free_args(self):
return self.args[0].free_args
def __call__(self, *indices):
"""Returns tensor with ordered free indices replaced by ``indices``
Parameters
==========
indices
Examples
========
>>> from sympy import Symbol
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead
>>> D = Symbol('D')
>>> Lorentz = TensorIndexType('Lorentz', dim=D, dummy_fmt='L')
>>> i0,i1,i2,i3,i4 = tensor_indices('i0:5', Lorentz)
>>> p, q = tensorhead('p,q', [Lorentz], [[1]])
>>> g = Lorentz.metric
>>> t = p(i0)*p(i1) + g(i0,i1)*q(i2)*q(-i2)
>>> t(i0,i2)
metric(i0, i2)*q(L_0)*q(-L_0) + p(i0)*p(i2)
>>> t(i0,i1) - t(i1,i0)
0
"""
free_args = self.free_args
indices = list(indices)
if [x._tensortype for x in indices] != [x._tensortype for x in free_args]:
raise ValueError('incompatible types')
if indices == free_args:
return self
index_tuples = list(zip(free_args, indices))
a = [x.fun_eval(*index_tuples) for x in self.args]
res = TensAdd(*a)
return res
[docs] def canon_bp(self):
"""
canonicalize using the Butler-Portugal algorithm for canonicalization
under monoterm symmetries.
"""
args = [x.canon_bp() for x in self.args]
res = TensAdd(*args)
return res
def equals(self, other):
other = sympify(other)
if isinstance(other, TensMul) and other._coeff == 0:
return all(x._coeff == 0 for x in self.args)
if isinstance(other, TensExpr):
if self.rank != other.rank:
return False
if isinstance(other, TensAdd):
if set(self.args) != set(other.args):
return False
t = self - other
if not isinstance(t, TensExpr):
return t == 0
else:
if isinstance(t, TensMul):
return t._coeff == 0
else:
return all(x._coeff == 0 for x in t.args)
def __eq__(self, other):
return self.equals(other)
def __add__(self, other):
return TensAdd(self, other)
def __radd__(self, other):
return TensAdd(other, self)
def __sub__(self, other):
return TensAdd(self, -other)
def __rsub__(self, other):
return TensAdd(other, -self)
def __mul__(self, other):
tadd = TensAdd(*(x*other for x in self.args))
if not isinstance(tadd, TensExpr):
if (self.data is not None):
tadd.data = self.data * other
return tadd
if self.data is not None:
if isinstance(other, TensExpr):
if other.data is None:
raise ValueError("Cannot multiply abstract and valued tensors.")
data = VTIDS._contract_ndarray(self.args[0].free,
other.free,
self.data,
other.data)
if data.ndim == 0:
return data[()]
else:
data = self.data * other
else:
data = None
tadd.data = data
return tadd
def __rmul__(self, other):
tadd = self*other
if self.data is not None:
tadd.data = other*self.data
return tadd
def __div__(self, other):
other = sympify(other)
if isinstance(other, TensExpr):
raise ValueError('cannot divide by a tensor')
tadd = TensAdd(*(x/other for x in self.args))
if self.data is not None:
tadd.data = self.data / other
return tadd
def __rdiv__(self, other):
raise ValueError('cannot divide by a tensor')
def __getitem__(self, item):
return self.data[item]
__truediv__ = __div__
__truerdiv__ = __rdiv__
def _hashable_content(self):
return tuple(self.args)
def __hash__(self):
return super(TensAdd, self).__hash__()
def __ne__(self, other):
return not (self == other)
def contract_delta(self, delta):
args = [x.contract_delta(delta) for x in self.args]
t = TensAdd(*args)
return canon_bp(t)
[docs] def contract_metric(self, g):
"""
Raise or lower indices with the metric ``g``
Parameters
==========
g : metric
contract_all : if True, eliminate all ``g`` which are contracted
Notes
=====
see the ``TensorIndexType`` docstring for the contraction conventions
"""
args = [x.contract_metric(g) for x in self.args]
t = TensAdd(*args)
return canon_bp(t)
[docs] def fun_eval(self, *index_tuples):
"""
Return a tensor with free indices substituted according to ``index_tuples``
Parameters
==========
index_types : list of tuples ``(old_index, new_index)``
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> i, j, k, l = tensor_indices('i,j,k,l', Lorentz)
>>> A, B = tensorhead('A,B', [Lorentz]*2, [[1]*2])
>>> t = A(i, k)*B(-k, -j) + A(i, -j)
>>> t.fun_eval((i, k),(-j, l))
A(k, L_0)*B(l, -L_0) + A(k, l)
"""
args = self.args
args1 = []
for x in args:
y = x.fun_eval(*index_tuples)
args1.append(y)
return TensAdd(*args1)
[docs] def substitute_indices(self, *index_tuples):
"""
Return a tensor with free indices substituted according to ``index_tuples``
Parameters
==========
index_types : list of tuples ``(old_index, new_index)``
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> i, j, k, l = tensor_indices('i,j,k,l', Lorentz)
>>> A, B = tensorhead('A,B', [Lorentz]*2, [[1]*2])
>>> t = A(i, k)*B(-k, -j); t
A(i, L_0)*B(-L_0, -j)
>>> t.substitute_indices((i,j), (j, k))
A(j, L_0)*B(-L_0, -k)
"""
args = self.args
args1 = []
for x in args:
y = x.substitute_indices(*index_tuples)
args1.append(y)
return TensAdd(*args1)
def _print(self):
a = []
args = self.args
for x in args:
a.append(str(x))
a.sort()
s = ' + '.join(a)
s = s.replace('+ -', '- ')
return s
@staticmethod
[docs] def from_TIDS_list(coeff, tids_list):
"""
Given a list of coefficients and a list of `TIDS` objects, construct
a `TensAdd` instance, equivalent to the one that would result from
creating single instances of `TensMul` and then adding them.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead, TensAdd
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> i, j = tensor_indices('i,j', Lorentz)
>>> A, B = tensorhead('A,B', [Lorentz]*2, [[1]*2])
>>> eA = 3*A(i, j)
>>> eB = 2*B(j, i)
>>> t1 = eA._tids
>>> t2 = eB._tids
>>> c1 = eA.coeff
>>> c2 = eB.coeff
>>> TensAdd.from_TIDS_list([c1, c2], [t1, t2])
2*B(i, j) + 3*A(i, j)
If the coefficient parameter is a scalar, then it will be applied
as a coefficient on all `TIDS` objects.
>>> TensAdd.from_TIDS_list(4, [t1, t2])
4*A(i, j) + 4*B(i, j)
"""
if not isinstance(coeff, (list, tuple, Tuple)):
coeff = [coeff] * len(tids_list)
tensmul_list = [TensMul.from_TIDS(c, t) for c, t in zip(coeff, tids_list)]
return TensAdd(*tensmul_list)
[docs] def applyfunc(self, func):
"""
Return a new ``TensAdd`` object, whose data ndarray will be the elementwise
map of the current data ndarray by function ``func``.
"""
new_tadd = TensAdd(*self.args)
new_tadd.data = func(self.data)
return new_tadd
@property
def data(self):
if hasattr(self, "_data"):
return self._data
return None
@data.setter
def data(self, data):
# TODO: check data compatibility with properties of tensor.
self._data = data
@data.deleter
def data(self):
del self._data
self._data = None
def __iter__(self):
if not self.data:
raise ValueError("No iteration on abstract tensors")
return self.data.flatten().__iter__()
@doctest_depends_on(modules=('numpy',))
[docs]class TensMul(TensExpr):
"""
Product of tensors
Parameters
==========
coeff : SymPy coefficient of the tensor
args
Attributes
==========
``components`` : list of ``TensorHead`` of the component tensors
``types`` : list of nonrepeated ``TensorIndexType``
``free`` : list of ``(ind, ipos, icomp)``, see Notes
``dum`` : list of ``(ipos1, ipos2, icomp1, icomp2)``, see Notes
``ext_rank`` : rank of the tensor counting the dummy indices
``rank`` : rank of the tensor
``coeff`` : SymPy coefficient of the tensor
``free_args`` : list of the free indices in sorted order
``is_canon_bp`` : ``True`` if the tensor in in canonical form
Notes
=====
``args[0]`` list of ``TensorHead`` of the component tensors.
``args[1]`` list of ``(ind, ipos, icomp)``
where ``ind`` is a free index, ``ipos`` is the slot position
of ``ind`` in the ``icomp``-th component tensor.
``args[2]`` list of tuples representing dummy indices.
``(ipos1, ipos2, icomp1, icomp2)`` indicates that the contravariant
dummy index is the ``ipos1``-th slot position in the ``icomp1``-th
component tensor; the corresponding covariant index is
in the ``ipos2`` slot position in the ``icomp2``-th component tensor.
"""
def __new__(cls, coeff, *args, **kw_args):
coeff = sympify(coeff)
if len(args) == 2:
components = args[0]
indices = args[1]
tids = TIDS.from_components_and_indices(components, indices)
elif len(args) == 1:
tids = args[0]
components = tids.components
indices = tids.to_indices()
else:
raise TypeError("wrong construction")
for i in indices:
assert isinstance(i, TensorIndex)
t_components = Tuple(*components)
t_indices = Tuple(*indices)
obj = Basic.__new__(cls, coeff, t_components, t_indices)
obj._types = []
for t in tids.components:
obj._types.extend(t._types)
obj._tids = tids
obj._ext_rank = len(obj._tids.free) + 2*len(obj._tids.dum)
obj._coeff = coeff
obj._is_canon_bp = kw_args.get('is_canon_bp', False)
obj._matrix_behavior_kinds = dict()
return obj
@staticmethod
def from_data(coeff, components, free, dum, data=None, **kw_args):
if data is None:
tids = TIDS(components, free, dum)
else:
tids = VTIDS(components, free, dum, data)
return TensMul.from_TIDS(coeff, tids, **kw_args)
@staticmethod
def from_TIDS(coeff, tids, **kw_args):
# t_indices = tids.to_indices()
if isinstance(tids, VTIDS) and len(tids.free) == 0: # autodrop point
return coeff * tids.data[()]
return TensMul(coeff, tids, **kw_args)
@property
def free_args(self):
return sorted([x[0] for x in self.free])
@property
def components(self):
return self._tids.components[:]
@property
def free(self):
return self._tids.free[:]
@property
def coeff(self):
return self._coeff
@property
def dum(self):
return self._tids.dum[:]
@property
def rank(self):
return len(self.free)
@property
def types(self):
return self._types[:]
def equals(self, other):
if other == 0:
return self._coeff == 0
other = sympify(other)
if not isinstance(other, TensExpr):
assert not self.components
return self._coeff == other
res = self - other
return res == 0
def _hashable_content(self):
t = self.canon_bp()
r = (t._coeff, tuple(t.components), \
tuple(sorted(t.free)), tuple(sorted(t.dum)))
return r
def __hash__(self):
return super(TensMul, self).__hash__()
def __eq__(self, other):
# Basic's equality comparison considers 0 and a zero TensMul
# as never equal, here is a workaround:
if other == 0 and self.coeff == 0:
return True
# now call the Basic equality method, based on the args:
return super(TensMul, self).__eq__(other)
def __ne__(self, other):
return not self == other
[docs] def get_indices(self):
"""
Returns the list of indices of the tensor
The indices are listed in the order in which they appear in the
component tensors.
The dummy indices are given a name which does not collide with
the names of the free indices.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz)
>>> g = Lorentz.metric
>>> p, q = tensorhead('p,q', [Lorentz], [[1]])
>>> t = p(m1)*g(m0,m2)
>>> t.get_indices()
[m1, m0, m2]
"""
indices = [None]*self._ext_rank
start = 0
pos = 0
vpos = []
components = self.components
for t in components:
vpos.append(pos)
pos += t._rank
cdt = defaultdict(int)
# if the free indices have names with dummy_fmt, start with an
# index higher than those for the dummy indices
# to avoid name collisions
for indx, ipos, cpos in self.free:
if indx._name.split('_')[0] == indx._tensortype._dummy_fmt[:-3]:
cdt[indx._tensortype] = max(cdt[indx._tensortype], int(indx._name.split('_')[1]) + 1)
start = vpos[cpos]
indices[start + ipos] = indx
for ipos1, ipos2, cpos1, cpos2 in self.dum:
start1 = vpos[cpos1]
start2 = vpos[cpos2]
typ1 = components[cpos1].index_types[ipos1]
assert typ1 == components[cpos2].index_types[ipos2]
fmt = typ1._dummy_fmt
nd = cdt[typ1]
indices[start1 + ipos1] = TensorIndex(fmt % nd, typ1)
indices[start2 + ipos2] = TensorIndex(fmt % nd, typ1, False)
cdt[typ1] += 1
return indices
[docs] def split(self):
"""
Returns a list of tensors, whose product is ``self``
Dummy indices contracted among different tensor components
become free indices with the same name as the one used to
represent the dummy indices.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> a, b, c, d = tensor_indices('a,b,c,d', Lorentz)
>>> A, B = tensorhead('A,B', [Lorentz]*2, [[1]*2])
>>> t = A(a,b)*B(-b,c)
>>> t
A(a, L_0)*B(-L_0, c)
>>> t.split()
[A(a, L_0), B(-L_0, c)]
"""
indices = self.get_indices()
pos = 0
components = self.components
if not components:
return [TensMul.from_data(self._coeff, [], [], [])]
res = []
for t in components:
t1 = t(*indices[pos:pos + t._rank])
pos += t._rank
res.append(t1)
res[0] = TensMul.from_data(self._coeff, res[0].components, res[0]._tids.free, res[0]._tids.dum, is_canon_bp=res[0]._is_canon_bp)
return res
def __add__(self, other):
return TensAdd(self, other)
def __radd__(self, other):
return TensAdd(other, self)
def __sub__(self, other):
return TensAdd(self, -other)
def __rsub__(self, other):
return TensAdd(other, -self)
def __mul__(self, other):
"""
Multiply two tensors using Einstein summation convention.
If the two tensors have an index in common, one contravariant
and the other covariant, in their product the indices are summed
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz)
>>> g = Lorentz.metric
>>> p, q = tensorhead('p,q', [Lorentz], [[1]])
>>> t1 = p(m0)
>>> t2 = q(-m0)
>>> t1*t2
p(L_0)*q(-L_0)
"""
other = sympify(other)
if not isinstance(other, TensExpr):
coeff = self._coeff*other
tmul = TensMul.from_TIDS(coeff, self._tids, is_canon_bp=self._is_canon_bp)
tmul._matrix_behavior_kinds = self._matrix_behavior_kinds
return tmul
if isinstance(other, TensAdd):
return TensAdd(*[self*x for x in other.args])
matrix_behavior_kinds = dict()
self_matrix_behavior_kinds = self._matrix_behavior_kinds
other_matrix_behavior_kinds = other._matrix_behavior_kinds
for key, v1 in self_matrix_behavior_kinds.items():
if key in other_matrix_behavior_kinds:
v2 = other_matrix_behavior_kinds[key]
if len(v1) == 1:
other = other.substitute_indices((v2[0], -v1[0]))
if len(v2) == 2:
matrix_behavior_kinds[key] = (v2[1],)
elif len(v1) == 2:
auto_index = v1[1]._tensortype.auto_index
self = self.substitute_indices((v1[1], -auto_index))
other = other.substitute_indices((v2[0], auto_index))
if len(v2) == 1:
matrix_behavior_kinds[key] = (v1[0],)
elif len(v2) == 2:
matrix_behavior_kinds[key] = (v1[0], v2[1])
else:
matrix_behavior_kinds[key] = v1
for key, v2 in other_matrix_behavior_kinds.items():
if key in self_matrix_behavior_kinds:
continue
matrix_behavior_kinds[key] = v2
new_tids = self._tids*other._tids
coeff = self._coeff*other._coeff
tmul = TensMul.from_TIDS(coeff, new_tids)
if isinstance(tmul, TensExpr):
tmul._matrix_behavior_kinds = matrix_behavior_kinds
return tmul
def __rmul__(self, other):
other = sympify(other)
coeff = other*self._coeff
tmul = TensMul.from_TIDS(coeff, self._tids)
tmul._matrix_behavior_kinds = self._matrix_behavior_kinds
return tmul
def __div__(self, other):
other = sympify(other)
if isinstance(other, TensExpr):
raise ValueError('cannot divide by a tensor')
coeff = self._coeff/other
tmul = TensMul.from_TIDS(coeff, self._tids, is_canon_bp=self._is_canon_bp)
tmul._matrix_behavior_kinds = self._matrix_behavior_kinds
return tmul
def __rdiv__(self, other):
raise ValueError('cannot divide by a tensor')
def __getitem__(self, item):
return self.coeff * self.data[item]
__truediv__ = __div__
__truerdiv__ = __rdiv__
[docs] def sorted_components(self):
"""
Returns a tensor with sorted components
calling the corresponding method in a `TIDS` object.
"""
new_tids, sign = self._tids.sorted_components()
coeff = -self._coeff if sign == -1 else self._coeff
t = TensMul.from_TIDS(coeff, new_tids)
return t
[docs] def perm2tensor(self, g, canon_bp=False):
"""
Returns the tensor corresponding to the permutation ``g``
For further details, see the method in `TIDS` with the same name.
"""
new_tids = self._tids.perm2tensor(g, canon_bp)
coeff = self._coeff
if g[-1] != len(g) - 1:
coeff = -coeff
res = TensMul.from_TIDS(coeff, new_tids, is_canon_bp=canon_bp)
res._matrix_behavior_kinds = self._matrix_behavior_kinds
return res
[docs] def canon_bp(self):
"""
Canonicalize using the Butler-Portugal algorithm for canonicalization
under monoterm symmetries.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz)
>>> A = tensorhead('A', [Lorentz]*2, [[2]])
>>> t = A(m0,-m1)*A(m1,-m0)
>>> t.canon_bp()
-A(L_0, L_1)*A(-L_0, -L_1)
>>> t = A(m0,-m1)*A(m1,-m2)*A(m2,-m0)
>>> t.canon_bp()
0
"""
if self._is_canon_bp:
return self
if not self.components:
return self
t = self.sorted_components()
g, dummies, msym, v = t._tids.canon_args()
can = canonicalize(g, dummies, msym, *v)
if can == 0:
return S.Zero
tmul = t.perm2tensor(can, True)
tmul._matrix_behavior_kinds = self._matrix_behavior_kinds
return tmul
def contract_delta(self, delta):
t = self.contract_metric(delta)
return t
[docs] def contract_metric(self, g):
"""
Raise or lower indices with the metric ``g``
``g`` metric
Notes
=====
see the ``TensorIndexType`` docstring for the contraction conventions
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz)
>>> g = Lorentz.metric
>>> p, q = tensorhead('p,q', [Lorentz], [[1]])
>>> t = p(m0)*q(m1)*g(-m0, -m1)
>>> t.canon_bp()
metric(L_0, L_1)*p(-L_0)*q(-L_1)
>>> t.contract_metric(g).canon_bp()
p(L_0)*q(-L_0)
"""
components = self.components
antisym = g.index_types[0].metric_antisym
#if not any(x == g for x in components):
# return self
# list of positions of the metric ``g``
gpos = [i for i, x in enumerate(components) if x == g]
if not gpos:
return self
coeff = self._coeff
tids = self._tids
dum = tids.dum[:]
free = tids.free[:]
elim = set()
for gposx in gpos:
if gposx in elim:
continue
free1 = [x for x in free if x[-1] == gposx]
dum1 = [x for x in dum if x[-2] == gposx or x[-1] == gposx]
if not dum1:
continue
elim.add(gposx)
if len(dum1) == 2:
if not antisym:
dum10, dum11 = dum1
if dum10[3] == gposx:
# the index with pos p0 and component c0 is contravariant
c0 = dum10[2]
p0 = dum10[0]
else:
# the index with pos p0 and component c0 is covariant
c0 = dum10[3]
p0 = dum10[1]
if dum11[3] == gposx:
# the index with pos p1 and component c1 is contravariant
c1 = dum11[2]
p1 = dum11[0]
else:
# the index with pos p1 and component c1 is covariant
c1 = dum11[3]
p1 = dum11[1]
dum.append((p0, p1, c0, c1))
else:
dum10, dum11 = dum1
# change the sign to bring the indices of the metric to contravariant
# form; change the sign if dum10 has the metric index in position 0
if dum10[3] == gposx:
# the index with pos p0 and component c0 is contravariant
c0 = dum10[2]
p0 = dum10[0]
if dum10[1] == 1:
coeff = -coeff
else:
# the index with pos p0 and component c0 is covariant
c0 = dum10[3]
p0 = dum10[1]
if dum10[0] == 0:
coeff = -coeff
if dum11[3] == gposx:
# the index with pos p1 and component c1 is contravariant
c1 = dum11[2]
p1 = dum11[0]
coeff = -coeff
else:
# the index with pos p1 and component c1 is covariant
c1 = dum11[3]
p1 = dum11[1]
dum.append((p0, p1, c0, c1))
elif len(dum1) == 1:
if not antisym:
dp0, dp1, dc0, dc1 = dum1[0]
if dc0 == dc1:
# g(i, -i)
typ = g.index_types[0]
if typ._dim is None:
raise ValueError('dimension not assigned')
coeff = coeff*typ._dim
else:
# g(i0, i1)*p(-i1)
if dc0 == gposx:
p1 = dp1
c1 = dc1
else:
p1 = dp0
c1 = dc0
ind, p, c = free1[0]
free.append((ind, p1, c1))
else:
dp0, dp1, dc0, dc1 = dum1[0]
if dc0 == dc1:
# g(i, -i)
typ = g.index_types[0]
if typ._dim is None:
raise ValueError('dimension not assigned')
coeff = coeff*typ._dim
if dp0 < dp1:
# g(i, -i) = -D with antisymmetric metric
coeff = -coeff
else:
# g(i0, i1)*p(-i1)
if dc0 == gposx:
p1 = dp1
c1 = dc1
if dp0 == 0:
coeff = -coeff
else:
p1 = dp0
c1 = dc0
ind, p, c = free1[0]
free.append((ind, p1, c1))
dum = [x for x in dum if x not in dum1]
free = [x for x in free if x not in free1]
shift = 0
shifts = [0]*len(components)
for i in range(len(components)):
if i in elim:
shift += 1
continue
shifts[i] = shift
free = [(ind, p, c - shifts[c]) for (ind, p, c) in free if c not in elim]
dum = [(p0, p1, c0 - shifts[c0], c1 - shifts[c1]) for i, (p0, p1, c0, c1) in enumerate(dum) if c0 not in elim and c1 not in elim]
components = [c for i, c in enumerate(components) if i not in elim]
tids = TIDS(components, free, dum)
res = TensMul.from_TIDS(coeff, tids)
return res
[docs] def substitute_indices(self, *index_tuples):
"""
Return a tensor with free indices substituted according to ``index_tuples``
``index_types`` list of tuples ``(old_index, new_index)``
Note: this method will neither raise or lower the indices, it will just replace their symbol.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> i, j, k, l = tensor_indices('i,j,k,l', Lorentz)
>>> A, B = tensorhead('A,B', [Lorentz]*2, [[1]*2])
>>> t = A(i, k)*B(-k, -j); t
A(i, L_0)*B(-L_0, -j)
>>> t.substitute_indices((i,j), (j, k))
A(j, L_0)*B(-L_0, -k)
"""
free = self.free
free1 = []
for j, ipos, cpos in free:
for i, v in index_tuples:
if i._name == j._name and i._tensortype == j._tensortype:
if i._is_up == j._is_up:
free1.append((v, ipos, cpos))
else:
free1.append((-v, ipos, cpos))
break
else:
free1.append((j, ipos, cpos))
return TensMul.from_data(self._coeff, self.components, free1, self.dum, self.data)
[docs] def fun_eval(self, *index_tuples):
"""
Return a tensor with free indices substituted according to ``index_tuples``
``index_types`` list of tuples ``(old_index, new_index)``
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> i, j, k, l = tensor_indices('i,j,k,l', Lorentz)
>>> A, B = tensorhead('A,B', [Lorentz]*2, [[1]*2])
>>> t = A(i, k)*B(-k, -j); t
A(i, L_0)*B(-L_0, -j)
>>> t.fun_eval((i, k),(-j, l))
A(k, L_0)*B(-L_0, l)
"""
free = self.free
free1 = []
for j, ipos, cpos in free:
# search j in index_tuples
for i, v in index_tuples:
if i == j:
free1.append((v, ipos, cpos))
break
else:
free1.append((j, ipos, cpos))
return TensMul.from_data(self._coeff, self.components, free1, self.dum)
def __call__(self, *indices):
"""Returns tensor with ordered free indices replaced by ``indices``
Examples
========
>>> from sympy import Symbol
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead
>>> D = Symbol('D')
>>> Lorentz = TensorIndexType('Lorentz', dim=D, dummy_fmt='L')
>>> i0,i1,i2,i3,i4 = tensor_indices('i0:5', Lorentz)
>>> g = Lorentz.metric
>>> p, q = tensorhead('p,q', [Lorentz], [[1]])
>>> t = p(i0)*q(i1)*q(-i1)
>>> t(i1)
p(i1)*q(L_0)*q(-L_0)
"""
free_args = self.free_args
indices = list(indices)
if [x._tensortype for x in indices] != [x._tensortype for x in free_args]:
raise ValueError('incompatible types')
if indices == free_args:
return self
t = self.fun_eval(*list(zip(free_args, indices)))
return t
def _print(self):
if len(self.components) == 0:
return str(self._coeff)
indices = [str(ind) for ind in self.get_indices()]
pos = 0
a = []
for t in self.components:
if t._rank > 0:
a.append('%s(%s)' % (t.name, ', '.join(indices[pos:pos + t._rank])))
else:
a.append('%s' % t.name)
pos += t._rank
res = '*'. join(a)
if self._coeff == S.One:
return res
elif self._coeff == -S.One:
return '-%s' % res
if self._coeff.is_Atom:
return '%s*%s' % (self._coeff, res)
else:
return '(%s)*%s' %(self._coeff, res)
[docs] def applyfunc(self, func):
"""
Return a new ``TensAdd`` object, whose data ndarray will be the elementwise
map of the current data ndarray by function ``func``.
"""
new_tmul = TensMul(*self.args)
tids = new_tmul._tids
new_tmul._tids = VTIDS(tids.components, tids.free, tids.dum, func(self.data))
return new_tmul
@property
def data(self):
if isinstance(self._tids, VTIDS):
return self._tids.data
return None
@data.setter
def data(self, data):
# TODO: check data compatibility with properties of tensor.
self._tids = VTIDS(self.components, self.free, self.dum, data)
@data.deleter
def data(self):
self._tids = TIDS(self._tids.components, self._tids.free, self._tids.dum)
self._data = None
def __iter__(self):
if self.data is None:
raise ValueError("No iteration on abstract tensors")
return (self.coeff * self.data.flatten()).__iter__()
[docs]def canon_bp(p):
"""
Butler-Portugal canonicalization
"""
if isinstance(p, TensExpr):
return p.canon_bp()
return p
[docs]def tensor_mul(*a):
"""
product of tensors
"""
if not a:
return TensMul.from_data(S.One, [], [], [])
t = a[0]
for tx in a[1:]:
t = t*tx
return t
[docs]def riemann_cyclic_replace(t_r):
"""
replace Riemann tensor with an equivalent expression
``R(m,n,p,q) -> 2/3*R(m,n,p,q) - 1/3*R(m,q,n,p) + 1/3*R(m,p,n,q)``
"""
free = sorted(t_r.free, key=lambda x: x[1])
m, n, p, q = [x[0] for x in free]
t0 = S(2)/3*t_r
t1 = - S(1)/3*t_r.substitute_indices((m,m),(n,q),(p,n),(q,p))
t2 = S(1)/3*t_r.substitute_indices((m,m),(n,p),(p,n),(q,q))
t3 = t0 + t1 + t2
return t3
[docs]def riemann_cyclic(t2):
"""
replace each Riemann tensor with an equivalent expression
satisfying the cyclic identity.
This trick is discussed in the reference guide to Cadabra.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead, riemann_cyclic
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> i, j, k, l = tensor_indices('i,j,k,l', Lorentz)
>>> R = tensorhead('R', [Lorentz]*4, [[2, 2]])
>>> t = R(i,j,k,l)*(R(-i,-j,-k,-l) - 2*R(-i,-k,-j,-l))
>>> riemann_cyclic(t)
0
"""
if isinstance(t2, TensMul):
args = [t2]
else:
args = t2.args
a1 = [x.split() for x in args]
a2 = [[riemann_cyclic_replace(tx) for tx in y] for y in a1]
a3 = [tensor_mul(*v) for v in a2]
t3 = TensAdd(*a3)
if not t3:
return t3
else:
return canon_bp(t3)
def get_lines(ex, index_type):
"""
returns ``(lines, traces, rest)`` for an index type,
where ``lines`` is the list of list of positions of a matrix line,
``traces`` is the list of list of traced matrix lines,
``rest`` is the rest of the elements ot the tensor.
"""
def _join_lines(a):
i = 0
while i < len(a):
x = a[i]
xend = x[-1]
hit = True
while hit:
hit = False
for j in range(i + 1, len(a)):
if j >= len(a):
break
if a[j][0] == xend:
hit = True
x.extend(a[j][1:])
xend = x[-1]
a.pop(j)
i += 1
return a
tids = ex._tids
components = tids.components
dt = {}
for c in components:
if c in dt:
continue
index_types = c.index_types
a = []
for i in range(len(index_types)):
if index_types[i] is index_type:
a.append(i)
if len(a) > 2:
raise ValueError('at most two indices of type %s allowed' % index_type)
if len(a) == 2:
dt[c] = a
dum = tids.dum
lines = []
traces = []
traces1 = []
for p0, p1, c0, c1 in dum:
if components[c0] not in dt:
continue
if c0 == c1:
traces.append([c0])
continue
ta0 = dt[components[c0]]
ta1 = dt[components[c1]]
if p0 not in ta0:
continue
if ta0.index(p0) == ta1.index(p1):
# case gamma(i,s0,-s1)in c0, gamma(j,-s0,s2) in c1;
# to deal with this case one could add to the position
# a flag for transposition;
# one could write [(c0, False), (c1, True)]
raise NotImplementedError
# if p0 == ta0[1] then G in pos c0 is mult on the right by G in c1
# if p0 == ta0[0] then G in pos c1 is mult on the right by G in c0
ta0 = dt[components[c0]]
b0, b1 = (c0, c1) if p0 == ta0[1] else (c1, c0)
lines1 = lines[:]
for line in lines:
if line[-1] == b0:
if line[0] == b1:
n = line.index(min(line))
traces1.append(line)
traces.append(line[n:] + line[:n])
else:
line.append(b1)
break
elif line[0] == b1:
line.insert(0, b0)
break
else:
lines1.append([b0, b1])
lines = [x for x in lines1 if x not in traces1]
lines = _join_lines(lines)
rest = []
for line in lines:
for y in line:
rest.append(y)
for line in traces:
for y in line:
rest.append(y)
rest = [x for x in range(len(components)) if x not in rest]
return lines, traces, rest